作者:158文章网日期:
返回目录:范文示例
今天小编给各位分享八年级数学试卷的知识,文中也会对其通过2022八年级数学期中测试卷和八年级数学上册期中测试卷( 人教版)等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、2022八年级数学期中测试卷
一、八年级数学上册期中测试卷( 人教版)
新人教版八年级数学(上)期中测试试卷(考试用时:120分钟 满分: 120分)
一、选择题(共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内)
1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).
2. 对于任意三角形的高,下列说法不正确的是( )
A.锐角三角形有三条高 B.直角三角形只有一条高
C.任意三角形都有三条高 D.钝角三角形有两条高在三角形的外部
3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 9
4. 等腰三角形的一个角是80°,则它的底角是( )
A. 50° B. 80° C. 50°或80° D. 20°或80°
5. 点M(3,2)关于y轴对称的点的坐标为 ( )。 A.(—3,2) B.(-3,-2) C. (3,-2) D. (2,-3)
6. 如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=( )。 A.30° B. 40° C. 50° D. 60°
7. 现有四根木棒,长度分别为4cm,6cm,8cm,10cm.从中任取三根木棒,能组成三角形的个数为( )
A.1个 B.2个 C.3个 D.4个 8. 如图,△ABC中,AB=AC,D为BC的中点,以下结论: (1)△ABD≌△ACD ; (2)AD⊥BC;
(3)∠B=∠C ; (4)AD是△ABC的角平分线。 其中正确的有( )。
A.1个 B. 2个 C. 3个 D. 4个
9. 如图,△ABC中,AC=AD=BD,∠DAC=80º, 则∠B的度数是( ) A.40º B.35º C.25º D.20º
10. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是 ( )
A.30º B.36º C.60º D.72
11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.
A.① B.② C.③ D.①和②
12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为( ) (用含n的代数式表示).
A.2n+1 B. 3n+2 C. 4n+2 D. 4n-2
二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在相应题目后的横线上)
13. 若A(x,3)关于y轴的对称点是B(-2,y),则x=____ ,y=______ , 点A关于x轴的对称点的坐标是___________ 。
14.如图:ΔABE≌ΔACD,AB=10cm,∠A=60°,∠B=30°,
则AD=_____ cm,∠ADC=_____。
15. 如图,已知线段AB、CD相交于点O,且∠A=∠B,只需补充一个条件_________,则有△AOC≌△BOD。 16.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 处.
17. 如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=
18. 如图,小亮从A点出发前进10m,向右转15°, 再前进10m,又向右转15°…… 这样一直走下去, 他第一次回到出发点A时,一共走了 m
三、解答题(本大题共8小题,共66分)
19.(本题6分)一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?
20(本题8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴ △ABC≌△DEF; ⑵ BE=CF. 21.(本题8分)如图,△ABC中,AB=AC=CD,BD=AD,
求△ABC中各角的度数。
22.(本题8分)△ABC在平面直角坐标系中的位置如图所示.A
、B、C三点在格点上.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标; (2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.
23.(本题8分) 如图,点B和点C分别为∠MAN两边上的点,AB=AC.
(1)按下列语句画出图形:(要求不写作法,保留作图痕迹) ① AD⊥BC,垂足为D;
② ∠BCN的平分线CE与AD的延长线交于点E; ③ 连结BE.
(2)在完成(1)后不添加线段和字母的情况下,
请你写出除△ABD≌△ACD外的两对全等三角形: ≌ , ≌ ; 并选择其中的一对全等三角形予以证明. 24、(本题8分) 如图,AD为△ABC的中线,BE为△ABD的中线。
(1)∠ABE=15°, ∠BAD=40°,求∠BED的度数; (3)若△ABC的面积为40,BD=5,则E到BC边的距离为多少。
25.(本题10分)如图,点B在线段AC上,点E在线段BD上,
∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点。试探索BM和BN的关系,并证明你的结论。
26、(本题12分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论。
二、新人教版八年级上册数学期中测试卷含答案
八年级上期数学期中试卷填空题(1~10题 每空1分,11~14题 每空2分,共28分)
1、(1)在□ABCD中,∠A=44,则∠B= ,∠C= 。
(2)若□ABCD的周长为40cm, AB:BC=2:3, 则CD= , AD= 。
2、若一个正方体棱长扩大2倍,则体积扩大 倍。
要使一个球的体积扩大27倍,则半径扩大 倍。
3、对角线长为2的正方形边长为 ;它的面积是 。
4、化简:(1) (2) , (3) = ______。
5、估算:(1) ≈_____(误差小于1),(2) ≈_____(精确到0.1)。
6、5的平方根是 , 的平方根是 ,-8的立方根是 。
7、如图1,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是 。
8、如图2,直角三角形中未知边的长度 = 。
9、已知 ,则由此 为三边的三角形是 三角形。
10、钟表上的分针绕其轴心旋转,分针经过15分后,分针转过的角度是 。
11、如图3,一直角梯形,∠B=90°,AD‖BC,AB=BC=8,CD=10,则梯形的面积是 。
12、如图4,已知 ABCD中AC=AD,∠B=72°,则∠CAD=_________。
13、图5中,甲图怎样变成乙图:__ __ ___________________________ _。
14、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。
二、选择题(15~25题 每题2分,共22分)
15、下列运动是属于旋转的是( )
A.滚动过程中的篮球 B.钟表的钟摆的摆动
C.气球升空的运动 D.一个图形沿某直线对折过程
16、如图6,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走( )
A.140米 B.120米 C.100米 D.90米
17、下列说法正确的是( )
A. 有理数只是有限小数 B. 无理数是无限小数
C. 无限小数是无理数 D. 是分数
18、下列条件中,不能判定四边形ABCD为平行四边形的条件是( )
A. AB‖CD,AB=CD B. AB‖CD,AD‖BC
C. AB=AD, BC=CD D. AB=CD AD=BC
19、下列数组中,不是勾股数的是( )
A 3、4、5 B 9、12、15 C 7、24、25 D 1.5、2、2.5
20、和数轴上的点成一一对应关系的数是( )
A.自然数 B.有理数 C.无理数 D. 实数
21、小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法
中正确的是( )
A. 小丰认为指的是屏幕的长度; B 小丰的妈妈认为指的是屏幕的宽度;
C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.
22、小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
A. 2m; B. 2.5m; C. 2.25m; D. 3m.
23、对角线互相垂直且相等的四边形一定是( )
A、正方形 B、矩形 C、菱形 D、无法确定其形状
24、下列说法不正确的是( )
A. 1的平方根是±1 B. –1的立方根是-1
C. 是2的平方根 D. –3是 的平方根
25、平行四边形的两条对角线和一边的长可依次取( )
A. 6,6,6 B. 6,4,3 C. 6,4,6 D. 3,4,5
三、解答题(26~33题 共50分)
26、(4分)把下列各数填入相应的集合中(只填序号)
(1)3.14(2)- (3)- (4) (5)0
(6)1.212212221… (7) (8)0.15
无理数集合{ … };
有理数集合{ … }
27、化简(每小题3分 共12分)
(1). (2).
(3). (4).
28、作图题(6分)
如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段。请在图中画出 这样的线段。
29、(5分)用大小完全相同的250块正方形地板砖铺一间面积为40平方米的客厅,请问每一块正方形地板砖的边长是多少厘米?
30、(5分)一高层住宅大厦发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口如图,已知云梯长15米,云梯底部距地面2米,问发生火灾的住户窗口距离地面多高?
31、(6分)小珍想出了一个测量池塘宽度AB的方法:先分别从池塘的两端A、B引两条直线AC、BC相交于点C,然后在BC上取两点E、G,使BE=CG,再分别过E、G作EF‖GH‖AB,交AC于F、H。测量出EF=10 m,GH=4 m(如图),于是小珍就得出了结论:池塘的宽AB为14 m 。你认为她说的对吗?为什么?
32、(5分)已知四边形ABCD,从下列条件中任取3个条件组合,使四边形ABCD为矩形,把所有的情况写出来:(只填写序号即可)
(1)AB‖CD (2)BC‖AD (3)AB=CD (4)∠A=∠C (5)∠B=∠D
(6)∠A=90 (7)AC=BD (8)∠B=90(9)OA=OC (10)OB=OD
请你写出5组 、 、 、 、 。
33、(7分)小东在学习了 后, 认为 也成立,因此他认为一个化简过程: = 是正确的。
(3分)你认为他的化简对吗?如果不对,请写出正确的化简过程;
(2分)说明 成立的条件;
(3) (2分)问 是否成立,如果成立,说明成立的条件。
三、初二期中数学卷子
最佳答案8上还是8下?八年级数学(上)期中卷
一、填空(每小题3分,共24分)
1. 0.0016的平方根是_______; -8的立方根是_______.
2.已知 ,则=_______.
3.近似数0.0100有_____个有效数字.
4.若正比例函数的图象经过点( 1 , 2 ),则这个函数的表达式是_____________.
5. 的函数值随自变量的增加而_________.
6. _________; -1的相反数是___________.
7.将A(5 ,10)向右平移2个单位后坐标为_________.
8.函数y=x+4的图象与x轴的交点坐标为__________.
得分 评卷人
二、选择题(每小题3分,共30分)
1.下列各数中,没有平方根的是( )
A.0 B. C.-3 D.
2.下列说法中,正确的是( )
A.一次函数是正比例函数 B.正比例函数是一次函数
C.正比例函数不是一次函数 D.不是正比例函数就不是一次函数
3.数轴上的点与( )成 一 一 对应关系.
A.有理数 B.无理数 C.实数 D.正数和负数
4.下列关于旋转的说法,其正确的是( )
A.图形旋转时,其形状、大小和位置都发生了改变
B.图形旋转时,图形的大小发生了改变
C.图形旋转时,图形的形状发生了改变
D.图形旋转时,图形的位置发生了改变
5.下例说法正确的是( )
A. 36的平方根是6 B. 的平方根是±4
C.-125的立方根是-5 D.1的立方根是±1
6.实数 的大小关系是( )
A. B.
C. D.
7.直角坐标系中有三点A , B , O ,则ΔAOB的面积是( )
A. 4 B. 6 C. 8 D. 10
8.已知函数 当自变量增加2时,对应函数值会( )
A.增加1 B.减少1 C.增加4 D.减少4
9.每上6个台阶就升高1米,上升高度h(米)与上台阶数m之间函数关系式是( )
A. B. C. D.
10.已知点P 与点Q(5,1)关于x轴成轴反射,则有( )
A. B. C. D.
三、解答题(每小题6分,共24分)
1.化简:
2.已知一次函数的图象过(0 ,-6),(2 ,-4)两点,求该函数的表达式.
3.如图:四边形ABCD各顶点位置如图所示,求四边形ABCD的面积.
4.用图像法求下面一元二次方程组的近似解
四、(10分)
已知直线y=k x+b 与直线y=x-3平行,且与x轴交点的横坐标为-4,求此直线的表达式.
五、(12分)近海处有一可疑的船A正向公海方向行驶,我边防局接到情报后迅速派出快艇B追赶,如图所示 分别表示A船和B艇相对于海岸距离y(海里)与追赶时间x(分)之间的一次函数的关系 ,根据图像:
(1)分别求出 的函数关系式;
(2)当A船逃到离海岸12海里的公海时,
B艇将无法对其进行检查,问B艇能
否在A船逃入公海前将其拦截(A,B
速度匀速保持不变)
期中考试
一、1. ±0.0 4 ; -2 2. -27 3. 3 4. y= 2x 5. 减少
6. ,1 . 7、(7,10) 8、(-4 , 0)
二、CBCDC BADDB
三、1、 2、 y=x-6 3.17 4. 图略,
四、y = x+4
五、(1)l 1:y= x+4 , l 2 :y= x ; (2)能将其拦截
八年级数学(下)期中卷
一、填空(每小题3分,共24分)
1.已知关于x的一元一次方程x 2+3x+1-m=0 ,请你自选一个m的值,使方程没有实数根. m=________.
2.命题“同旁内角互补”的条件是____________________,结论是_________________.
3.已知方程 .当_______时,为一元二次方程.
4.设 ,则 =_______, =________.
5.如图,一斜坡AB长80m,高BC为5m,将重物从坡底A推到
坡上20m的M出处停下,则停止地点M的高度为__________.
6.命题“直角三角形的两锐角互余”的逆命题是_____________________________________
___________________________________________________.
7.如图,P是正方形ABCD内的一点,将△PCD绕点C
逆时针方向旋转后与△P CB重合,若PC=1,
则PP′ =__________.
8.已知一个三角形的两边长为 3和 4 , 若第三边长
是方程 的一个根,则这个三角形周长为____________,
面积为____________.
得分 评卷人
二、选择题(每小题3分,共30分)
1.已知一元二次方程 用配方法解该方程,则配方后的方程是( )
A. B.
C. D.
2.下列命题是假命题的是( )
A.所有的矩形都相似 B.所有的圆都相似
C.一个角是100°的两个等腰三角形相似 D.所有的正方形都相似
3.已知线段a、b有 ,则a:b为( )
A. 5 : 1 B. 5 : 2 C. 1 : 5 D. 3 : 5
4.如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形一定是( ) .
A.锐角三角形 B.钝角三角形 C. 等腰三角形 D.直角三角形
5.下列说法正确的是( )
A.“对顶角相等”是定义 B.“在直线AB上取一点C”是命题
C.“整体大于部分”是公理 D.“同位角相等”是定理
6.已知等腰梯形的上底与腰相等,且对角线与腰垂直,则梯形的两底之比是( )
A. 1:2 B. 1 : C. 2:3 D. 1 :
7.已知代数式 与 的值相等,则=( )
A. 1 B.-1或-5 C. 2或3 D. -2或-3
8.如图,在平行四边形ABCD中, F是AD延长线上一点,
连接BF交DC与点E,则图中相似三角形共有( )
A. 0对 B. 1对
C. 2对 D.3对
9.关于x的方程mx 2+x-2m=0( m为常数)的实
数根的个数有( )
A. 0个 B. 1个 C. 2个 D. 1个或2个
10.如图5,△ABC中,边BC=12cm,高AD=6cm ,边长为x的
正方形PQMN的一边在BC上,其余两个顶点分别在AB、AC
上,则正方形边长x为( )
A. 3cm B. 4cm C. 5cm D. 6cm
得分 评卷人
三、解答题(每小题8分,共24分)
1.解下列方程
(1) (2)
2.如图,△ABC中,∠BAC=90°, AD⊥BC于D, FB平分∠ABC交AD于E ,交AC于F .
求证:AE =AF
3.已知,如图,点E是正方形ABCD的边AB上的任意一点,过点D作 交BC的延长线于点F,求证:DE=DF
四、应用题(10分)
在长方形钢片上剪去一个小长方形,制成一个四周宽相等的长方形框(如图).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2 ,求这个长方形框的框边宽.
五、提高题(12分)
得分 评卷人
如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,
求BF的长(计算结果可含根号)
期中卷
一、填空题:1、略,2、条件:两个角是同旁内角,结论:这两个角相等。3、 ,
4、 、 , 5、 ,6、有两角互余的三角形是直角三角形,7、 , 8、7、6
二、选择题:DAACC ADDDB
三、解答题
1、① ②
2、证明:∵ ,
∴ ,∴
又∵BF平分 , 且
∴ ,∴AE=AF
3、证明:因为四边形ABCD是正方形,所以 且
又因为 即 ,有 ,所以 得DE=DF
四、应用题
解:设边框宽为 cm,有 得 (不合题意 舍)
五、提高题 (1)提示,可证 ∽
(2)可设 ,则 ,由勾股定理得
关于八年级数学试卷的问题,通过《新人教版八年级上册数学期中测试卷含答案》、《初二期中数学卷子》等文章的解答希望已经帮助到您了!如您想了解更多关于八年级数学试卷的相关信息,请到本站进行查找!
本文标签:八年级数学试卷(2)