158文章网欢迎您
您的位置:158文章网 > 范文示例 > 热力学第二定律

热力学第二定律

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享热力学第一第二定律的知识,文中也会对其通过热力学第二定律和什么是热力学第二定律,有什么意义等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 热力学第二定律
  • 什么是热力学第二定律,有什么意义
  • 热力学第二定律到底什么意思?
  • 热力学第二定律怎样理解?
  • 一、热力学第二定律

    终于要开始接近这个让老郭激动的物理量(熵)了,在讨论熵之前,我们还需要在知识上做一些准备,本文重点在于介绍热力徐第二定律。在介绍之前,我们先来了解一下热力学过程中的不可逆过程。如果一个过程的每一步都可以在相反方向进行而不引起其它变化,称为可逆过程,反之,引起其它变化的过程称不可逆过程。

    从上面的描述我们能够看出,除了准静态过程是可逆过程,因为它的每一步都处在热力学平衡态,其它一切实际过程都是不可逆过程,即任何一个实际过程都是可以向相反方向进行,但是一定会引起外界的变化。

    一切实际过程均不可逆反映了热力学的规律,这和力学规律是完全不同的,这就是热力学第二定律所表达的基本事实。

    我们如何来看待这个基本事实呢?因为我们根本没有办法去验证自然界所有的实际过程,我们只能用逻辑推理的方法来说明热力学第二定律所表达的基本事实——实际过程均是不可逆过程。

    我们都知道,准静态过程只是一个理想过程,这个过程要求进行得无限缓慢并且无摩擦或没有能量损耗,这在实际过程中是做不到的,所以实际过程就不可能是可逆过程。再看一些极端的粒子,如人的生长过程,炸弹爆炸的过程,气体的扩散过程等,都是不可逆过程。

    理想气体的基本过程图

    热力学第二定律是从经验中得到的,它有几种表述方式。一般的表述为:任何一个宏观过程向相反方向进行而不引起其它变化是不可能的。我们来看一下其它的表述方式:

    1850年克劳修斯根据热传导的逆过程的不可能性提出:不可能把热量从低温物体传到高温物体而不引起其它变化;

    1851年开尔文根据摩擦生热的逆过程不可能性提出一个说法:不可能从单一热源取热使它全部变成功而不引起其它变化;

    奥斯特瓦尔德提出另外一个重要的说法:第二类永动机是不可能实现的。所谓的第二类永动机是指一个热机仅从单一热源吸收热而转变成功,而无其它变化。

    其实,上面的几种不同的说法,我们是可以证明它们都是等价的。

    如果克劳修斯说法不成立则开尔文说法也不成立

    我们应该强调“不引起其它变化”。这是因为一个理想气体在做等温可逆膨胀的时候,对外做了功,由于理想气体的自由膨胀内能不变,ΔU=0,则理想气体做的功等于气体在膨胀过程中吸收的热量,吸收的热量全部变成了功,看上去这是违反热力学第二定律的开尔文说法,但实际上有其它变化,在这个过程中,气体的体积变大了。所以理想气体膨胀过程是满足热力徐第二定律的。

    关于热力学第二定律,本文就介绍到这里,好期待赶紧开始研究熵啊。

    一、什么是热力学第二定律,有什么意义

    热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。

    意义:热力学第二定律说明热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体(克劳修斯表述);也可表述为:两物体相互摩擦的结果使功转变为热,但却不可能将这摩擦热重新转变为功而不产生其他影响。

    对于扩散、渗透、混合、燃烧、电热和磁滞等热力过程,虽然其逆过程仍符合热力学第一定律,但却不能自发地发生。热力学第一定律未解决能量转换过程中的方向、条件和限度问题,这恰恰是由热力学第二定律所规定的。



    扩展资料

    热力学第二定律是阐明与热现象相关的各种过程进行的方向、条件及限度的定律。由于工程实践中热现象普遍存在, 热力学第二定律应用范围极为广泛,诸如热量传递、热功互变、化学反应、燃料燃烧、气体扩散、混合、分离、溶解、结晶、辐射、生物化学、生命现象、信息理论、低温物理、气象以及其他许多领域。

    功可以自动地转化为热,功转热是不可逆过程, 其反向过程, 即降低流体的热力学能或收集散给环境的热量转化为功重新举起重物回复原位的过程, 则不能单独地、自动地进行, 热不可能全部无条件地转化为功。

    热量一定自动地从高温物体传向低温物体; 而反向过程, 热量由低温传回高温、系统回复到原状的过程,则不能自动进行, 需要依靠外界的帮助。



    二、热力学第二定律到底什么意思?

    热力学第二定律(second law of thermodynamics),热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。

    开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

    扩展资料:

    热力学第二定律是建立在对实验结果的观测和总结的基础上的定律。虽然在过去的一百多年间未发现与第二定律相悖的实验现象,但始终无法从理论上严谨地证明第二定律的正确性。自1993年以来,Denis J.Evans等学者在理论上对热力学第二定律产生了质疑,从统计热力学的角度发表了一些关于“熵的涨落“的理论,比如其中比较重要的FT理论。

    而后G.M.Wang等人于2002在Physical Review Letters上发表了题为《小系统短时间内有悖热力学第二定律的实验证明》。从实验观测的角度证明了在一定条件下热,孤立系统的自发熵减反应是有可能发生的。

    三、热力学第二定律怎样理解?

    1.在孤立系中,能量总是从有序到无序。表明了一种能量的自发的衰减过程。用熵来描述混乱的状态。

    2.在热力学中具体还需要参看克劳修斯和凯尔文的解释。

    开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不引起其它变化。

    克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其它变化。

    3.在热力学中主要揭示热机效率的问题。在其他方面,如进化论的证明方面也起作用。

    用生动的语句描述就是:你用餐后总是会花费的比你实际吃的要多。

    扩展资料:

    ①热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。

    指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。

    自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。

    热机能连续不断地将热变为机械功 ,一定伴随有热量的损失。第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。

    ②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。它并不违反热力学第一定律,但却违反热力学第二定律。

    ③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。

    一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。

    ④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。

    ⑤根据热力学第零定律,确定了态函数——温度;

    根据热力学第一定律,确定了态函数——内能和焓;

    根据热力学第二定律,也可以确定一个新的态函数——熵。可以用熵来对第二定律作定量的表述。

    热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。表述如下:

    1、可以通过使两个体系相接触,并观察这两个体系的性质是否发生变化而判断这两个体系是否已经达到热平衡。

    2、当外界条件不发生变化时,已经达成热平衡状态的体系,其内部的温度是均匀分布的,并具有确定不变的温度值。

    3、一切互为平衡的体系具有相同的温度,所以一个体系的温度可以通过另一个与之平衡的体系的温度来表示,也可以通过第三个体系的温度来表示。

    参考资料:

    关于热力学第一第二定律的问题,通过《热力学第二定律到底什么意思?》、《热力学第二定律怎样理解?》等文章的解答希望已经帮助到您了!如您想了解更多关于热力学第一第二定律的相关信息,请到本站进行查找!

    相关阅读

    • 热力学第二定律

    • 158文章网范文示例
    • 今天小编给各位分享热力学第一第二定律的知识,文中也会对其通过热力学第二定律和什么是热力学第二定律,有什么意义等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了
    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网