返回目录:范文示例
今天小编给各位分享百分数应用题的知识,文中也会对其通过六年级数学「分数和百分数」的应用题知识要点,经典例题+答案和六年级数学上册《百分数》知识点总结等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、六年级数学「分数和百分数」的应用题知识要点,经典例题+答案
专项练习分数、百分数应用题是六年级数学下册必考的题型,今天王老师整理了相关的内容给大家,今天分享的是六年级数学【分数和百分数】的应用题知识要点,经典例题+答案!
【基础概念】:
分数、百分数应用题是指与分数、百分数有关的,运用分数、百分数的知识能够解决的问题;
(1)解决这类问题的关键是找标准量,即单位“1”,若单位“1”已知,就用乘法解决,若单位“1”未知,就用除法解决;
(2)求甲比乙多(或少)几分之几(百分之几)的规律是:甲、乙的差÷乙;已知甲比乙多(或少)几分之几(百分之几),求甲的规律是:乙数×(1±几分之几或百分之几);已知甲比乙多(或少)几分之几(百分之几),求乙的规律是:甲数÷(1±几分之几或百分之几);
(3)利息=本金×利率×时间;
(4)应纳税额=应纳税所得额×税率。
【典型例题1】:一台彩电,现价1800元,比原来降低了6(1),原来的售价是多少元?
【思路分析】:由题意“一台彩电,现价1800元,比原来降低了6(1),可知,把原来的价格看做单位“1”,单位“1”不知道用除法进行解答,即用1800除以(1- 6(1))就是彩电原来的售价。
【解答】: 1800÷(1-6(1))
=1800÷6(5)
=1800×5(6)
=2160(元)
答:原来的售价是2160元。
【小结】:解决这类问题,首先要找到单位“1”是什么,再看单位“1”是已知还是未知,若单位“1”已知,就用乘法解决,若单位“1”未知,就用除法解决。
【巩固练习】
1. 一列火车从上海开往汉口,已经行了5(3),离汉口还有400千米.上海到汉口的铁路长多少千米?
2. “富贵园”食品厂去年计划产值2400万元,采用新设备后,实际产值比计划增长5(3),实际产值多少万元?
3. 一套服装280元,裤子的价钱占上衣价钱的5(2),上衣是多少元?裤子是多少元?
【典型例题2】:百货大楼搞促销活动,甲品牌鞋满200元减100元,乙品牌鞋“折上折”,就是先打六折,在此基础上再打九五折.如果两个品牌都有一双标价260元的鞋,哪个品牌的更便宜?
【思路分析】:甲品牌,超过200元就减去100元,那么原价260的鞋,只需要260-100元;乙品牌,“折上折”,先打六折,在此基础上再打九五折,先把原价看成单位“1”,用原价乘上60%,就是六折后的价格,再把六折后的价格看成单位“1”,再乘上95%,就是现价;比较两种品牌的现价即可求解。
解答:甲品牌:260>200,所以减100元,
260-100=160(元)
乙品牌:260×60%×95%
=156×95%
=148.2(元)
148.2<160
答:乙品牌的更便宜。
【小结】:解决这类问题的关键是理解两种品牌不同的优惠方法,注意乙品牌的两个单位“1”的不同,分别把两种品牌优惠后的价钱计算出来,再进行比较。
【巩固练习】
4. 十一期间超市搞促销活动,甲超市满200元减100元,乙超市搞“折上折”活动,就是先打六折,在此基础上再打九五折.妈妈想买一双400元钱的鞋子,你帮妈妈算算在哪个超市买更划算呢?
5. 华润万家搞促销活动,A品牌童装“满100元减50元”B品牌童装“折上折”,即先打七折,在此基础上凭会员卡再打九折.如果两个品牌都有一件标价280元的童装,李阿姨有会员卡,她买哪个品牌童装更便宜?
答案及解析:
1.【解析】把上海到汉口的铁路长看成单位“1”,它的(1- 5(3))对应的数量是400千米,由此用除法求出全长。
【答案】400÷(1-5(3))=1000(千米);
答:上海到汉口的铁路长1000千米。
2.【解析】将计划产值当做单位“1”,实际产值比计划增长5(3),则实际产值是计划的1+5(3),计划产值2400万元,根据分数乘法的意义可知,实际产值是2400×(1+ 5(3))元。
【答案】2400×(1+5(3))=3840(元).
答:实际产值是3840元.
3.【解析】裤子的价钱占上衣价钱的 5(2),则裤子占这套服装总价格的 2+5(2),所以裤子的价格是280× 2+5(2)元,进而用总价格减去裤子的价格即是上衣的价格。
【答案】:280× 2+5(2)=80(元)
280-80=200(元)
答:上衣是200元,裤子是80元.
4. 【解析】甲超市,超过200元就减去100元,那么一双400元的鞋,只需要400-400÷200×100=200元;乙超市,“折上折”,先打六折,在此基础上再打九五折,先把原价看成单位“1”,用原价乘上60%,就是六折后的价格,再把六折后的价格看成单位“1”,再乘上95%,就是现价;比较两个超市的现价即可求解。
【答案】:甲超市:
400÷200=2
2×100=200(元)
400-200=200(元)
乙超市:
400×60%×95%
=240×95%
=228(元)
200<228
答:在甲超市买更划算.
5. 【解析】A品牌,超过100元就减去50元,那么原价280的鞋,只需要280-2×50元;B品牌,“折上折”,先打七折,在此基础上再打九折,先把原价看成单位“1”,用原价乘上70%,就是7折后的价格,再把7折后的价格看成单位“1”,再乘上90%,就是现价;比较两种品牌的现价即可求解。
【答案】: A品牌:280>200,所以减2×50=100元,280-100=180(元)
B品牌:
280×70%×90%
=196×90%
=176.4(元)
176.4<180
答:B品牌的更便宜。
王老师今天的分享就到这里了,同学们如果还有其他不懂的知识点,都可以给老师留言,老师看到了会给大家出相应的资料的。
一、六年级数学上册《百分数》知识点总结
百分数的学习是非常基础的数学知识点,下面是我给大家带来的 六年级数学 上册《百分数》知识点 总结 ,希望能够帮助到大家!
六年级数学上册《百分数》知识点总结
(一)百分数的基本概念
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4.小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5.百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
(二)百分数应用题
百分数应用题(一)
求增加百分之几?减少百分之几?
公式:增加百分之几=增加的部分÷单位1
减少百分之几=减少的部分÷单位1
例如:1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之几:5÷45=11.1%
2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:45立方厘米
第二步:增加的部分: 5立方厘米
第三步:增加百分之几:5÷45=11.1%
3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?
解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:第一步:单位1:水:50—5=45立方厘米
第二步:增加的部分: 5立方厘米
第三步:增加百分之几:5÷45=11.1%
4、“减少百分之几与增加百分之几”的解题 方法 完全相同。
5、与增加百分之几相同的还有“多百分之几”“提高百分之几”
“增长百分之几“等。
与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分之几”等。
百分数应用题(二)
比一个数增加百分之几的数,比一个数减少百分之几的数。
例如1、矣得小学去年有80名学生,今年的学生人数比去年增加了25%,今年有多少名学生?
解题思路:单位1去年已经知道用乘法,增加用(1+25%)
算式:80×(1+25%)
2、矣得小学去年有80名学生,今年的学生人数比去年减少了25%,今年有多少名学生?
解题思路:单位1去年已经知道用乘法,减少用(1-25%)
算式:80×(1-25%)
3、矣得小学今年有100名学生,比去年增加了25%,去年有多少名学生?
解题思路:单位1去年不知道用除法,增加用(1+25%)
算式:100÷(1+25%)
4、矣得小学今年有100名学生,比去年减少了25%,去年有多少名学生?
解题思路:单位1去年不知道用除法,增加用(1-25%)
算式:100÷(1-25%)
百分数应用题(三)列方程解百分数应用题
1、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,第一天比第二天多看20页,这本书一共有多少页?
解题思路:单位1一本书不知道,可以选用方程或除法来解答。
根据“第一天比第二天多看20页”可以知道第一天是多的,第二天是少的,第一天减去第二天等于多出的20页。
等量关系式:第一天—第二天=20页
方法1:解:设这本书一共有X页。
由“第一天看了全书的25%”可以知道第一天等于全书乘以25%,用X可以表示为25%X,由“第二天看了全书的20%”可以知道第二天等于全书乘以20%,用X可以表示为20%X.依据等量关系式“第一天—第二天=20页”可以列方程为:25%X—20%X=20
方法2:“第一天比第二天多看20页”可以知道20页是第一天和第二天的差。要求单位1只要用20页除以20页的对于分率。
列算式为:20÷(25%—20%)
2、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,两天共看了20页,这本书一共有多少页?
等量关系式:由“两天共看了20页”可以知道第一天+等二天=20页。
方程法:解:设这本书共有X页,则第一天为25%X,第二天为20%X。
方程列为:25%X+20%X=20
算术法:由“两天共看了20页”可以知道20页是第一天和第二天的和,要求单位1只要用20页除以20页的对于分率。
列算式为:20÷(25%+20%)
3、小明看一本书,第一天看了全书的25%,第二天看了全书的20%,还剩20页,这本书一共有多少页?
等量关系式:一本书—第一天—第二天=20页
方程法:解设这本书一共有X页,则第一天为25%X,第二天为20%X。
列方程为:X—25%X—20%X=20
算术法:20÷(1- 25%X- 20%)
4、小明看一本书,第一天看了全书的25%,第二天比第一天多看10页,还剩20页,这本书一共有多少页?
方程法:解设这本书一共有X页,则第一天为25%X,第二天为(25%X+10)页。
列方程为:X—25%X—(25%X+10)=20
百分数应用题(四)利息的计算
1.本金:存入银行的钱叫做本金。
2.利息:取款时银行多支付的钱叫做利息。
利息=本金×利率×时间
3.2008年10月9日以前国家规定,存款的利息要按20%的税率纳税。国债的利息不纳税。2008年10月9日以后免收利息税。所以如无特殊说明,就不在计算利息税。
4.利率:利息与本金的比值叫做利率。
5.银行存款税后利息的计算公式:税后利息=利息×(1-20%)
6.国债利息的计算公式:利息=本金×利率×时间
7.本息:本金与利息的总和叫做本息。
8.应纳税额:缴纳的税款叫应纳税额。
9.税率:应纳税额与各种收入的比率叫做税率。
10.应纳税额的计算:应纳税额=各种收入×税率
例如:李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李老师的本金和利息共有多少元?
解题思路:要求“本金和利息共有多少元”应该用本金的2000元加上利息的。
解题步骤:第一步:根据“利息=本金×利率×时间”算利息
利息:2000×4.14%×5=414元
第二步:本金+利息:2000+414=2414元。
例如:李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算,到期时,李老师的本金和利息共有多少元?(如果利息按20%来上税)
解题思路:要求“本金和利息共有多少元”应该用本金的2000元加上利息的。
解题步骤:第一步:根据“利息=本金×利率×时间”算利息
利息:2000×4.14%×5=414元
第二步:算税后利息:414×(1—20%)=331.2元
本金+利息:2000+331.2=233.2元。
二、小学六年级分数、百分数应用题类型总结
百分数1、求一个数是另一个数的百分之几。
一个数÷另一个数×100%
2、求一个数比另一个数多百分之几。
(一个数-另一个数)÷另一个数×100%
可概括为:(大数-小数)÷小数×100%
3、求一个数比另一个数少百分之几。
(另一个数-一个数)÷另一个数×100%
可概括为:(大数-小数)÷大数×100%
4、求一个数的百分之几是多少。
单位“1”的量×百分之几=百分之几对应量
5、求比一个数多百分之几的数是多少。
单位“1”的量×(1+百分之几)=(1+百分之几)对应量
6、求比一个数少百分之几的数是多少。
单位“1”的量×(1-百分之几)=(1-百分之几)对应量
7、已知一个数的百分之几是多少,求这个数。
百分之几对应量÷百分之几=单位“1”的量
8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,其解法类似于第7类,还可以根据相关条件列方程解答。
简单应用题的类型
1、简单应用题:是指用一步计算解答的应用题。
2、简单的加法应用题。
(1)根据加法意义,求两个数的和。(2)求比一个数多几的数。
3、简单的减法应用题。
(1)根据减法意义,求剩余。(2)求两数的相差数。(3)求比一个数少几的数。
4、简单乘法应用题。(1)求几个相同加数的和。(2)求一个数的几倍(几分之几)是多少。
5、简单的除法应用题。
(1)已知两个因数的积与其中一个因数,求另一个因数。(2)把一个数平均分成若干份,求每份是多少。(3)求一个数里包含几个另一个数。(4)求一个数是另一个数的几倍(或几分之几)。(5)已知一个数的几倍(或几分之几)是多少,求这个数。
复合应用题的类型及解法
1、“归一”问题:此类应用题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求出单一量(即归一),再以它为标准,根据题目要求算出所求量。
2、“归总”问题:此类题中暗含着总量不变,即乘积不变。其解题的关键是先求出总数(即归总),再根据总数算出所求量。
3、行程问题:根据速度、时间和路程之间的关系,计算相向、相背或同向运动的问题,称为行程问题。其基本的数量关系式为:速度×时间=路程,路程÷时间=速度,路程÷速度=时间。相遇问题,即同时相向而行并相遇或(同时背向而行);速度和×(相遇)时间=总路程。追及问题,即同时同向而行,速度慢的在前,速度快的在后:速度差×追及时间=路程差。
4、工程问题:把工作总量看作单位“1”,工作效率用单位时间内完成工作总量的“几分之一”表示。根据工作总量、工作效率、工作时间其中两种量求出第三种量。数量关系式为:
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
5、分数应用题:关键是找标准量,即单位“1”。若单位“1”已知,用乘法计算;若单位“1”未知,用除法计算。
求甲比乙多(或少)几分之几(百分之几)的解题规律:(甲-乙)÷乙
已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:
乙×(1+几分之几)
乙×(1-几分之几)
已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:
甲÷(1+几分之几)
甲÷(1-几分之几)
利息=本金×利率×时间
(5)应纳税额=应纳税所得额×税率
希望能帮到你!
三、六年级上册数学百分数知识点
六年级上册数学百分数知识点1
一、百分数的意义: 表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
六年级上册数学百分数知识点2
1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
11.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面
(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。
(4)根据线段图写出等量关系式:标准量×对应分率=比较量。
求一个数的几倍:一个数×几倍;
求一个数的几分之几是多少:一个数×几几。
六年级上册数学百分数知识点3
(一)、折扣和成数
1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
几折就是十分之几,也就是百分之几十。例如:八折=8/10=80%,
六折五=6.5/10=65/100=65%
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80%
商品现在打六折五:现在的售价是原价的65%
2、成数:
几成就是十分之几,也就是百分之几十。例如:一成=1/10=10%
八成五=8.5/10=85/100=80%
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10%
今年小麦的收成是去年的八成五:今年小麦的收成是去年的85%
(二)、税率和利率
1、税率
(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:
应纳税额=总收入×税率
收入额=应纳税额÷税率
2、利率
(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的`钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:
利息=本金×利率×时间
利率=利息÷时间÷本金×100%
(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
税后利息=本金×利率×时间×(1-利息税率)
购物策略:
估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案
数学最小的数是什么
要回答这个问题,我们首先看一下“几位数”的概念:在一个数中数字的个数是几(其最左端的数字不为0),这个数就是几位数。关于几位数的定义中,最左端的数字不为0是关键条件。就像我们分数定义中,明确规定分母不为0一样,否则没意义。
在整数中,最小的计数单位是1(个),当0单独存在时,它不占有数位。当0出现在一个几位数的末尾或中间时,它起到的只是“占位”的作用,表示该位上没有计数单位。
假设0也算一位数的话,那么最小的两位数是“10”还是“00”呢?00是没有两位数的意义的。
所以,一位数是由一个不是0这个数字写出的数,只要几位数的意义不变,最小的一位数仍然是1。
数学三位数乘两位数知识点
速度×时间=路程
单价×数量=总价
工作效率×工作时间=工作总量
路程÷时间=速度
总价÷单价=数量
工作总量÷工作时间=工作效率
路程÷速度=时间
总价÷数量=单价
工作总量÷工作效率=工作时间
积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)
一个因数乘几,另一个因数除以几,积不变(零除外)。
两位数乘三位数,积最多五位数,最少四位数
估算原则:便于口算、接近准确数、能解决实际问题(估大或估小)
关于百分数应用题的问题,通过《小学六年级分数、百分数应用题类型总结》、《六年级上册数学百分数知识点》等文章的解答希望已经帮助到您了!如您想了解更多关于百分数应用题的相关信息,请到本站进行查找!