返回目录:范文示例
今天小编给各位分享我的数学教学故事的知识,文中也会对其通过我与数学文化 - 第四届数学文化征文和数学文化读后感等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、我与数学文化 - 第四届数学文化征文
本文为“2022年第四届数学文化征文活动
我与数学文化
作者 : 戴晓雪
作品编号:046
在我的眼中,数学不仅仅是书本上习题上那些没有感情的数字符号,更是一段历史文化。我们有时也会好奇,这些课本上的数学公式从何而来?那些伟大的数学家有时如何发现数学的奥秘的?
为了让我们了解数学文化,老师在课堂上介绍了基本不等式的历史。
老师先让我们看了张图(见图2.1-3),这是2002年第24届国际数学大会会标,会标是根据中国古代数学家赵爽的弦图设计的,这风车的形状也代表了中国人民热情好客。
接着,老师讲述了这“风车”图的由来,公元3世纪,中国数学家赵爽“负薪余日,聊观《周髀》”,他在给《周髀算经》“勾股网方图”作注时,给出这“风车图”并写道:“以图考之,倍弦实,满外大方,而多黄实。黄实之多,即勾股差实,以差实减之,开其余,地外大方。大方之面,即勾股并也。”数学老师就围绕着这段古文,将赵爽的语言符号化。如下图所示
老师让我们让我们行走在不断变化的数学文化中,在无形中激发了我们的探索欲,拓宽了我们的知识面。
通过这次对数学文化的了解,我对数学也产生了不一样的感觉。起初,我觉得数学是枯燥乏味的,也从来不会去思考一个个公理是如何产生的。现在呢,我觉得数学是有趣的。在上课之前,老师总是会要求我们预习,这时候我就感受到了数学文化的魅力。数学书上那本不起眼的一角,却成了让我最感兴趣的一部分。所以说,只有从文化出发,我们才能感受到数学的乐趣。
在接触了数学文化若干次之后,我感觉数学不仅仅是一门学科,更是一段段故事。在这一段段故事中,我们不但要去学习知识,更要去学习数学的本质特征,数学是一门知识、语言、自然与社会联系的工具,又是思想方法和具有审美特征的艺术的集合体。就比如说,当我在做题时,我总会去硬套公式,导致我每次都被框在这个公式的形式上,不会去利用它。但是如果我了解了这段数学文化,就会理解数学的本质特征,从而去思考如何应用。这无疑在解题方面给了我莫大的帮助。
通过对数学文化学习,能够让我们去主动思考,用自己的话去表达自己的数学思考,进而从不同角度去思考和解决问题,培养我们的科学探索精神。
已发文章>>
001 阅读《数学的故事》有感
002 我想和数学谈场恋爱
003 数学“化错”中的美
004 让数学思考成为数学课堂的主旋律
005 卢梭的“错”?
006 数学教学案例《找次品》
007 基于优化学生数学思维的高效课堂创建——以等腰三角形的判定一课为例
008 从特殊到一般,引导数学思维
009 数学文化融入家庭教育的研究
010 sin 震荡函数的图像分析
011 四阶幻方的“太极图”性质
012 无理数的定义和实数理论的建立
013 一个容易被忽视的问题——数学文化
014 “双减”背景下初中数学学科的合作学习方式探究
015 中学数学德育渗透的方法与路径
016 《数学的力量》读后感
017 基于数学文化的单元统整教学设计——以“圆的认识与面积”教学为例
018 有助于数的理解的数字圈环
019 以折叠为例,探究生长型数学教学模式
020 我从事数学科普写作的经验与启示
021 在阅读中滋长智慧——读《教育智慧从哪里来》有感
022 学习数学史 做数学的使者
023 开数学文化之窗 启数学文化魅力——阅读《美丽的数学》有感
024 “文学独白”——数学教学因你而精彩
025 如何用多面体三等分正方体
026 HPM视角下《圆的周长》教学设计
027 被误解的“勾股定理”
028 好玩的数学
029 帮小青蛙设计一个井
030 万物的基础——数学——读《从一到无穷大》有感
031 读《孙子算经》鸡兔同笼问题有感
032 HPM视角下高中数学多样化作业的设计
033 攀越高峰的领路人——数学文化
034 我的好兄弟:数学
035 细嗅数学文化之香
036 藤蔓的喜悦
037 物理力学中数学的影子
038 复数外传
039 函数的历史和发展
040 数学文化与我
041 数学之趣
一、数学文化读后感
在悠久灿烂的中国古代文化中,数学文化是其中一朵绚丽的奇葩。数学不仅是中国古代实用科学的基石,而且含有神秘的文化色彩,有着深厚的文化积淀,它渗透在中国的各个领域,是中华文化不可缺少的一部分。以下是数学文化读后感,欢迎阅读。
数学文化读后感1
在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。
众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。
读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。 天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。
数学文化读后感2
在一次偶然的机会,在我空闲之余,我在图书馆乱转,无意间我翻看了那本方延明的 《数学文化》一书,随手翻了几页,真觉得里面的内容很不错,所以我把它借了下来,也花 了不少时间了解了其中的一些内容。之后也在网上收集了有关的一些资料。 本书是一本高等学校素质教育的新型教材, 其特点是把数学作为文化来研究。 通过对数 学文化的学习,培养大学生的抽象思维、形象思维和逻辑思维等方面的能力,特别是大学生 的创新能力,提高文化素质,以适应社会需要。不管是学过数学,还是没学过数学的人,只 要具备一定数学基础,都可阅读该书,并获得帮助。 本书共分八章,简要阐述了数学文化的学科体系,以及数学文化的哲学观、社会观、美 学、创新观、方法论等方面的主要内容,并附有专章介绍几千年来的数学思想发展史,给读 者一个整体的数学科学发展的系统体系。 本书在写作上坚持理论联系实际,注重介绍思想,介绍方法,重在开拓人们思考问题的 思路,诱导激发人们的创新意识。本书可作为高等学校文、理、工各类大学生素质教育的专 门教材,也可作为一般人文科学工作者、社会科学工作者、大学教师、研究生,包括国家公 务员在内的文化参考用书和课外读物 没有任何一种科学能像数学这样泽被后人。爱因斯坦在谈到数学时说: “数学之所以 有高声誉, 还有另一个理由, 那就是数学给予精密自然科学以某种程度的可靠性, 没有数学, 这些科学是达不到这种可靠性的。 M·克莱因说: ” “数学不仅是一种方法、一门艺术或一 种语言, 数学更主要的是一门有
着丰富内容的知识体系, 其内容对自然科学家、 社会科学家、 哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索 宇宙的好奇心和对美妙音乐的冥想; 有时甚至可能以难以察觉到的方式但无可置疑地影响着 现代历史的进程。 ”实际上,在现代经验科学中,能否接受数学方法已越来越成为该学科成 功与否的主要判别标准。 早在 1 959 年 5 月,著名数学家华罗庚就在《****》上发表了“大哉数学之为用” 的文章,精彩地论述“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜, 日用之繁”等方面,无处不有数学的重要贡献。中国科学院数学物理学部由王梓坤先生起草 的《今日数学及其应用》课题中,特别强调了数学的贡献,他说: “数学的贡献在于对整个 科学技水平的推进与提高,对科技人才的培养和滋润,对经济建设的繁荣,对全体人民的科
学思维与文化素质的哺育,这四方面的作用是极为巨大的,也是其他学科所不能全面比拟 的。 ” 数学与教育、数学与文化、数学与史学、数学与哲学、数学与社会学、数学与高科技等 交叉的方面,都派生出一些新的学科生长点。以数学与经济学的'结合为例:数学与经济学可 以说密不可分, 以至于在今天不懂数学就无法研究经济。 在宏观经济活动中如何及时刹住经 济过于繁荣, 又不至于滑入灾难性的经济衰退的危险中, 可从最优控制理论得到方法上的帮 助。正是由于运用了控制理论和梯度法,人们求解了南朝鲜经济的最优计划模
型。在微观经 济中,数学的作用也极为广泛。比如在提高产品的成功率方面,若某一产品的质量是依赖于 若干个因素,而这若干个因素的每个因素又都受一些条件的制约,如何挑选出最优搭配,实 际上就是一个统计实验设计(SED)的问题。当今世界,运用数学建立经济模型,寻求经济 管理中的最佳方案,运用数学方法组织、调度、控制生产过程,从数据处理中获取经济信息 等,使得代数学、分析学、概率论和统计数学等大量数学的思想方法进入经济学,并反过来 促进了数学学科的发展。 今天, 一位不懂数学的经济学家是决不会成为一位杰出经济学家的。 数学是人类科学文化中的基础性学科之一, 它具有典型的学科独立性, 不受其他学科的 制约,它不像物理、化学、天文等受制于数学,缺少一种独立性。数学的创新特点主要有两 个方面:一是原创性(发明和发现),二是继承性(亦即创造性地去完善)。 数学文化的美学观是构成数学文化的重要内容。古代哲学家、数学家普洛克拉斯断言: “哪里有数,哪里就有美。 ”开普勒也说, “数学是这个世界之美的原型” 。对数学文化的审 美追求已成为数学得以发展的重要原动力。以致法国诗人诺瓦利也曾高唱: “纯数学是一门 科学,同时也是一门艺术”“既是科学家同时又是艺术家的数学工作者,是大地上唯一的幸 , 运儿。 ”古往今来,许多数学家、哲学家都把“美”作为决定选题、选题标准和成功标准的 一种评价尺度, 甚至把“美的考虑”放在高于一切的位置。 著名数学家冯· 诺伊曼就曾写道: “我认为数学家无论是选择题材还是判断成功的标准,主要都是美学的。 ”庞加莱则更明确 地说: “数学家们非
常重视他们的方法和理论是否优美,这并非华而不实的作风,那么,到 底是什么使我们感到一个解答、一个证明优美呢?那就是各个部分之间的和谐、对称,恰到 好处的平衡。一句话,那就是井然有序、统一协调,从而使我们对整体以及细节都能有清楚 的认识和理解,这正是产生伟大成果的地方。 从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就 会惊奇地发现这是一个美仑美奂的奇异世界。 而本文所提及的一些东西还只是隔岸观火的皮 毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。
总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化, 慢慢体会,别有一般滋味在里面。
二、数学文化与生活3000字论文
数学文化人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。
早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。
数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展
了几千年,表现出了强大的生命力。
数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。
数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。
数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的
创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。
(2)数学对人的文化素养影响
面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:
有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世
界。
有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。
有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值
在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐
民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
二,数学:一种思想方法
数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限
制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭
义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
三,数学:理性的艺术
通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,
音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。
(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。
(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情
感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维
的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材
四,数学韵味——数学的美
说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……
数学美可以分为形式美和内在美。
数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。
数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。
美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加
深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。
数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。
三、《数学文化》读后感
导语:读了《数学文化》一书后,各位来谈谈自己的感想吧。下面是我收集整理的《数学文化》读后感,供各位阅读,希望对大家有所帮助。
《数学文化》读后感(一)
近几年来,“数学文化”一词越来越多的被人们提起,尤其是在2007年观摩了 张齐华老师的“圆的认识”一课之后,对“数学文化”更觉其神奇,也就更加期待,直至今年11月份有幸参加了“国培计划”,在徐师大进行了为期半个月的培训之后,期待之情更加浓郁,急于想要揭开“数学文化”的面纱,可因前段时间的培训及紧张的赶课和复习迎考,就将其暂时搁置了,直至今日终于有空坐下来进行学习了。
前几日现在网上邮购了一本由高等教育出版社出版,顾沛老师主编的《数学文化》一书,该书是普通高等教育“十一五”国家级规划教材。我希望通过该书的学习,能够初步了解数学与人类社会发展的关系,体会数学的科学价值、应用价值和人文价值;开阔自己的数学视野,加强对数学的宏观认识和整体把握;受到优秀文化的熏陶,领会数学的理性精神,从而提高自身的文化修养;同时也希望能帮助自己为课堂渗透数学文化提供些许帮助。
新学年我的个人发展规划就是希望能逐步形成一套完整的适合小学生的数学文化实施方案。“数学文化”与一般的数学课是有重大区别的,它特别重视学生数学思想、精神的提升。教师在教学中,不但要向学生传授数学知识,更应该让学生体会数学知识中蕴含的数学文化,了解“数学方式的理性思维”,提高学生的数学素养。
“数学文化”实践、探索之路应该是漫长的,但也一定是有意义的,我将为之不断努力,不断学习,不断归纳,不断总结!
《数学文化》读后感(二)
在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。
众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。
读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。
数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。 天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!
数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。
从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的'奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。
《数学文化》读后感(三)
在一次偶然的机会,在我空闲之余,我在图书馆乱转,无一件件我翻看了那本方延明的 《数学文化》一书,随手翻了几页,真觉得里面的内容很不错,所以我把它借了下来,也花 了不少时间了解了其中的一些内容。之后也在网上收集了有关的一些资料。 本书是一本高等学校素质教育的新型教材, 其特点是把数学作为文化来研究。 通过对数 学文化的学习,培养大学生的抽象思维、形象思维和逻辑思维等方面的能力,特别是大学生 的创新能力,提高文化素质,以适应社会需要。不管是学过数学,还是没学过数学的人,只 要具备一定数学基础,都可阅读该书,并获得帮助。 本书共分八章,简要阐述了数学文化的学科体系,以及数学文化的哲学观、社会观、美 学、创新观、方法论等方面的主要内容,并附有专章介绍几千年来的数学思想发展史,给读 者一个整体的数学科学发展的系统体系。 本书在写作上坚持理论联系实际,注重介绍思想,介绍方法,重在开拓人们思考问题的 思路,诱导激发人们的创新意识。本书可作为高等学校文、理、工各类大学生素质教育的专 门教材,也可作为一般人文科学工作者、社会科学工作者、大学教师、研究生,包括国家公 务员在内的文化参考用书和课外读物 没有任何一种科学能像数学这样泽被后人。爱因斯坦在谈到数学时说: “数学之所以 有高声誉, 还有另一个理由, 那就是数学给予精密自然科学以某种程度的可靠性, 没有数学, 这些科学是达不到这种可靠性的。 M·克莱因说: ” “数学不仅是一种方法、一门艺术或一 种语言, 数学更主要的是一门有着丰富内容的知识体系, 其内容对自然科学家、 社会科学家、 哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索 宇宙的好奇心和对美妙音乐的冥想; 有时甚至可能以难以察觉到的方式但无可置疑地影响着 现代历史的进程。 ”实际上,在现代经验科学中,能否接受数学方法已越来越成为该学科成 功与否的主要判别标准。 早在 1 959 年 5 月,著名数学家华罗庚就精彩地论述“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜, 日用之繁”等方面,无处不有数学的重要贡献。中国科学院数学物理学部由王梓坤先生起草 的《今日数学及其应用》课题中,特别强调了数学的贡献,他说: “数学的贡献在于对整个 科学技水平的推进与提高,对科技人才的培养和滋润,对经济建设的繁荣,对全体人民的科学思维与文化素质的哺育,这四方面的作用是极为巨大的,也是其他学科所不能全面比拟 的。 ” 数学与教育、数学与文化、数学与史学、数学与哲学、数学与社会学、数学与高科技等 交叉的方面,都派生出一些新的学科生长点。以数学与经济学的结合为例:数学与经济学可 以说密不可分, 以至于在今天不懂数学就无法研究经济。 在宏观经济活动中如何及时刹住经 济过于繁荣, 又不至于滑入灾难性的经济衰退的危险中, 可从最优控制理论得到方法上的帮 助。正是由于运用了控制理论和梯度法,人们求解了南朝鲜经济的最优计划模型。在微观经 济中,数学的作用也极为广泛。比如在提高产品的成功率方面,若某一产品的质量是依赖于 若干个因素,而这若干个因素的每个因素又都受一些条件的制约,如何挑选出最优搭配,实 际上就是一个统计实验设计(SED)的问题。当今世界,运用数学建立经济模型,寻求经济 管理中的最佳方案,运用数学方法组织、调度、控制生产过程,从数据处理中获取经济信息 等,使得代数学、分析学、概率论和统计数学等大量数学的思想方法进入经济学,并反过来 促进了数学学科的发展。 今天, 一位不懂数学的经济学家是决不会成为一位杰出经济学家的。 数学是人类科学文化中的基础性学科之一, 它具有典型的学科独立性, 不受其他学科的 制约,它不像物理、化学、天文等受制于数学,缺少一种独立性。数学的创新特点主要有两 个方面:一是原创性(发明和发现),二是继承性(亦即创造性地去完善)。 数学文化的美学观是构成数学文化的重要内容。古代哲学家、数学家普洛克拉斯断言: “哪里有数,哪里就有美。 ”开普勒也说, “数学是这个世界之美的原型” 。对数学文化的审 美追求已成为数学得以发展的重要原动力。以致法国诗人诺瓦利也曾高唱: “纯数学是一门 科学,同时也是一门艺术”“既是科学家同时又是艺术家的数学工作者,是大地上唯一的幸 , 运儿。 ”古往今来,许多数学家、哲学家都把“美”作为决定选题、选题标准和成功标准的 一种评价尺度, 甚至把“美的考虑”放在高于一切的位置。 著名数学家冯· 诺伊曼就曾写道: “我认为数学家无论是选择题材还是判断成功的标准,主要都是美学的。 ”庞加莱则更明确 地说: “数学家们非常重视他们的方法和理论是否优美,这并非华而不实的作风,那么,到 底是什么使我们感到一个解答、一个证明优美呢?那就是各个部分之间的和谐、对称,恰到 好处的平衡。一句话,那就是井然有序、统一协调,从而使我们对整体以及细节都能有清楚 的认识和理解,这正是产生伟大成果的地方。 从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就 会惊奇地发现这是一个美仑美奂的奇异世界。 而本文所提及的一些东西还只是隔岸观火的皮 毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。
总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化, 慢慢体会,别有一般滋味在里面。
关于我的数学教学故事的问题,通过《数学文化与生活3000字论文》、《《数学文化》读后感》等文章的解答希望已经帮助到您了!如您想了解更多关于我的数学教学故事的相关信息,请到本站进行查找!