返回目录:范文示例
今天小编给各位分享初二下册数学练习题的知识,文中也会对其通过七年级数学下册:各章节同步练习题!每天做一遍,考试轻松拿高分和求七年级下册数学应用题100道【50道也可以】,带答案的【尽量字数题目少点】,急用,谢谢~等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、七年级数学下册:各章节同步练习题!每天做一遍,考试轻松拿高分
七年级数学下册:各章节同步练习题!每天做一遍,考试轻松拿高分
初一数学的学习难度跟小学相比确实提高了不少,从上学期不少同学的期末考试成绩就可以明显地看得出来,更有同学小学阶段是处于中上,进入初中却直接垫底了,不少家长也是非常担忧,到底怎样才能学好数学这门学科呢?
其实,初中数学是非常考验同学们综合能力的。不仅仅是数学知识的运用,还包括计算能力、思维方式的培养等,家长们也可以发现一个问题,那就是孩子计算能力不错的话,数学成绩肯定不会太差。要知道“数学源于生活、生活又离不开数学”,学好了数学这门学科的话,对于思维、创新、分析、归纳等方面都是大有益处的。
初一是非常重要的一个阶段,虽然脱离了小学,但是要为初二、初三数学的学习打好基础才行。而且越到后面知识点难度就越大,不打好基础的话,数学成绩铁定是很难有提高的。
鉴于此下面老师整理了,七年级数学下册各章节的同步练习题,每天做一遍,考试轻松拿高分。同学们一定要收藏好并打印下来做练习,相信啃透掌握,数学成绩的提升是非常快的。
文末有word资料的获取方式!
因文章篇幅受限,资料分享不全,word打印版资料获取如下:
1、点击头像进入主页并关注,
2、点击私信回复“666”即可。
一、求七年级下册数学应用题100道【50道也可以】,带答案的【尽量字数题目少点】,急用,谢谢~
很不容易的、王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的促销方式不同,在甲商场一次性购物超过100元,超过的部分8折优惠;在乙商场一次性购物超过50元,超过的部分9折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?
解 :设王女士在甲商场购物超过X元就比在乙商场购物优惠。
(X-100)×80%+100<50+(X-50)×90%
0.8X-80+100<50+0.9X-45
移项 ﹣0.1X<-15
X>150
2、动物园里,两只狒狒在玩跷跷板,体重33kg的大狒狒把小狒狒翘上了天,吓的小狒狒直叫,这时,一直体重是小狒狒一半的小猴子从树上跳到了小狒狒的身上,只见大狒狒离开了地面,被翘了起来,你知道小猴子有多重吗?
解:设小猴子的体重为X kg,
33≤X+2X
33≤3X
X≥11
故X≥11kg
3、某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”?
设小组成员有x名
5x=4x+15+9
5x-4x=15+9
4.某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问
(1) 初一年级人数是多少?原计划租用45座客车多少辆?
解:租用45座客车x辆,租用60座客车(x-1)辆,
45x+15=60(x-1)
解之得:x=5 45x+15=240(人)
答:初一年级学生人数是240人,
计划租用45座客车为5辆
5将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少?
解;设为XH
1/5+1/20X+1/12X=1
8/60X=4/5
X=6
甲,乙两人合作的时间是6H.
6甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是()
设甲数为4X.则乙为3X.丙为3X-2.
4X+3X+3X-2=53
10X=53+2
10X=55
X=5.5
3X=16.5
3X-2=16.5-2=14.5
乙为16.5,丙为14.5
7粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间?
设停电x小时. 粗蜡烛每小时燃烧1/5,细蜡烛是1/4
1-1/5X=4(1-1/4)
1-1/5X=4-X
-1/5+X=4-1
4/5X=3
X=15/4
8.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
设十位数为x
则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171
化简得
424x=1272
所以:x=3
则这个三位数为437
9一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书?
解:设⑵班捐x册
3x=152+x+3xX40%
3x=152+x+6/5x
3x-x-6/5x=152
4/5x=152
x=190…⑵班
190X3=570(本)
10.已知甲乙两人共同完成一件工作需12天,若甲乙单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍。求甲、乙单独完成这件工作各需多少天?
设甲为x天,则乙为1.5x,
1/x+1/1.5x=1/12,
过程,两边同乘x,得1+1/1.5=x/12,得x=20
11.一项工程,若甲队承包刚好在规定日期内完成,乙队承包则要超过3天完成。结果甲、乙两队合作2天,剩下部分由乙队单独做,刚好在规定日期完成。求规定日期是多少天?
设日期为x天
甲工作效率为1/x,乙为1/(x+3),
则方程为,(1/x+1/(x+3))*2+(x-2)/(x+3)=1,
过程,2/x+2/(x+3)+(x-2)/(x+3)=1
x/(x+3)=(x-2)/x
x=6
12某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?
解: 设分配x人去生产螺栓,则(28-x)人生产螺母
因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数
2×12x=18(28-x)
解得 x=12 所以28-x=28-12=16
即应分配12人生产螺栓,16人生产螺母
13甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?
可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米
则所求时间t=0.27/135=0.002小时
14现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
15甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
16.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
17甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
18.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
19.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时。
20某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。
根据题意得:【1-15%】X+【1+25%】【2300-X】=2300
解之得:931
答:下半年生产931台。
21甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288m
1-X/3=2[1-3X/8]
X=2.4
即停电了2.4小时。
20.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。
21小明与小聪两人同时在同一商店买粮食,小明每次购买100千克,小聪每次用去100元。但这两次购买粮食的单价不同。若规定:两次购买粮食的平均单价谁低,谁的购梁方式合算。则你能判断小明与小聪谁的购梁方式更合算吗?
一:
(1)甲乙两队合作效率1/6,乙丙合作效率1/10,甲丙合作效率(2/3)÷5=2/15
所以甲乙丙三队合作效率为(1/6+1/10+2/15)÷2=1/5
甲队单独完成全部工程需要1÷(1/5-1/10)=10天
乙队单独完成全部工程需要1÷(1/5-2/15)=15天
丙队单独完成全部工程需要1÷(1/5-1/6)=30天
(2)甲乙日工资和8700/6=1450元,乙丙日工资和9500/10=950元,甲丙日工资和5500/5=1100元
所以甲乙丙日工资和(1450+950+1100)÷2=1750元
所以甲日工资1750-950=800元,乙日工资1750-1100=650元,丙日工资1750-1450=300元
所以甲队单独完成全部工程需要10天,费用800×10=8000元
乙队单独完成全部工程需要15天,费用650×15=9750元
丙队单独完成全部工程需要30天,费用300×30=9000元
所以,若工期要求不超过15天完成全部工程,甲队单独完成此工程花钱最少。
或⑴单独做,三个队需要的天数。
甲:2÷(1/6+2/3÷5-1/10)=10天,
乙:1÷(1/6-1/10)=15天,
丙:1÷(1/10-1/15)=30天。
⑵首先丙队不能在15天内完成,因此排除丙队。
每两队每天工资和:
甲丙8700÷6=1450元;乙丙9500÷10=950元;甲丙5500÷5=1100元
甲乙单独每天工资:
甲队:(1100+1450-950)÷2=800元;乙队:1450-800=650元
因为800×10<650×15,所以找甲队花钱最少。
二:解:设招聘甲种工种的工人是x人,乙种工种人数nx(n=2),所招聘工人共需付月工资y元
那么y=600x+1000nx
因为随着乙种工种人数增加,所以当乙种工种人数是甲种工种人数的2倍(n=2)时,每月所付的工资最少。所以甲种工种招聘50人,乙种工种招聘100人可使每月所付的工资最少,最少工资是130000元。
三:1008>100×9=900元
1314÷9=112
解:设甲旅游团有x人,乙旅游团有112-x人。
11x+13(112-x)=1314
11x+1456-13x=1314
-2x+1456=1314
-2x=-142
x=71
112-x=112-71=41(人)
答:甲旅游团有71人,乙旅游团有41人。
四:
设每分钟增加旅客为x
(a+30x)/30=(a+10x)/20
得:x=a/30
每个检票口每分钟检票人数为:a/15
需要得检票口个数为:[a+5*(a/15)]/[(a/15)*5]=4个至于追加悬赏分与否随你吧
22某单位新盖了一座楼房,要从相距132米处的自来水主管道铺设水管,现有8米长与5米长的两种规格的水管可供选用。请你设计方案,如何选取这两种水管,才能恰好从主管道铺设到这座楼房?这样的方案有几种?若8米长的水管每根50元,5米长的水管每根35元,选哪种方案最省钱
解:设8米的水管X根,5米的水管Y根
8x+5y=132
解得:
x=4 y=20
x=9 y=12
x=14 y=4
由题意得,因为要使最省钱,所以当8米长的水管14根,5米长的水管4根时最省钱。
23已知方程组ax+by=c
a'x+b'y=c’
他的解为x=3
y=4
求方程组3ax+2by=5c 的解
3a'+2b'y=5c'
3ax+2by=5c
3a'+2b'y=5c' 两个式子都除以5
得3/5ax+2/5by=c
3/5a'x+2/5b'y=c'
把x=3
y=4分别带入原方程组
3/5xa+2/5yb=c
3a + 4b=c
3/5ya'+2/5yb'=c'
3a' + 4b'=c’
因为结果相同,字母相同,所以系数相同。
3/5x=3 x=5 2/5y=4 y=10
24为了拉动内需,山东省启动了“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型冰箱和Ⅱ型冰箱的数量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元。根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台Ⅰ型和Ⅱ型冰箱,政府共补贴了多少元?(结果保留2个有效数字)
<1>,解;设启动活动前一个月售出第一种冰箱x台那么第2种型号的售出了<960—x>台。
然后列式;x乘以<1+30%>+<960-X>乘以<1+25%>=1228
x=560
答;在启动活动前一个月,销售给农户的Ⅰ型冰箱为560台,销售给农户的Ⅱ型冰箱为960-560=400台。
<2>,根据题意,首先算出启动活动后的第一个月的两种冰箱的销售量。
启动活动后的第一个月Ⅰ型冰箱的销售量:560x(1+30%)=728台
Ⅰ型冰箱农户补贴为:728x<2298x13%>=217482.72元
启动活动后的第一个月Ⅱ型冰箱的销售量:400X<1+25%>=500台
Ⅱ型冰箱农户补贴为:500x<1999X13%>=129935元
政府共补贴了多少元:2174852.72+129935=2304787.72保留两个有效数字为2300000
25为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍、建造新校舍。拆除旧校舍每平米需80元,建造新校舍每平米需700元。计划在年内拆除旧校舍共7200平方米,在实施中为扩大绿化面积,新建校舍只完成了80%,而拆除校舍超过10%,结果恰好完成了原计划的拆、建的总面积。 1.求原来计划拆建面积个多少平方米? 2.若绿化1平方米需200元,那么实际完成拆、建工程中结余资金能用来绿化大约多少平方米?
解:设拆x平方米,新建y平方米,则有等式:
x+y=7200.............(1)
1.1x+0.8y=7200.......(2)
(2)-(1)得 0.1x-0.2y=0,故x=2y,代入(1)式得 3y=7200
∴y=2400m²,x=7200-2400=4800m²
即原计划拆4800m²,新建2400m².
原计划资金4800×80+2400×700=2064000元=206.4万元
实际用资金1.1×4800×80+0.8×2400×700=1766400元=176.64万元
节约2064000-1766400=297600元
故可绿化面积297600/200=1488m²
26某中学建一栋4层的教学大楼,每层楼有8间教室,进这栋大楼共有四道门,其中两道正门大小相同,两道侧门也大小相同。安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。 1.求平均每分钟一道正门和一道侧门各可以通过多少名学生? 2.检查中发现,紧急情况时因学生拥挤,出门的效率降低20%。安全检查规定,在紧急情况下全大楼学生应在5分钟内通过这4道门。假设这栋教学大楼每间教室最多有45名学生,问:建造这4道门是否符合规定?请说明理由。
设平均每分钟一道正门和一道侧门各可以通过X、Y名学生
则 (X+2Y)*2=560
(X+Y)*4=800
得到 小门 Y=80,大门X=120
第二问
全楼总人数是 4*8*45=1440
而四道门5分内能通过的人数为=(2X+2Y)*5*(1-20%)=1600人
所以是合格的
27王女士看中的商品在甲、乙两商场以相同的价格销售,两商场采用的促销方式不同,在甲商场一次性购物超过100元,超过的部分8折优惠;在乙商场一次性购物超过50元,超过的部分9折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?
解 :设王女士在甲商场购物超过X元就比在乙商场购物优惠。
(X-100)×80%+100<50+(X-50)×90%
0.8X-80+100<50+0.9X-45
移项 ﹣0.1X<-15
X>150
28动物园里,两只狒狒在玩跷跷板,体重33kg的大狒狒把小狒狒翘上了天,吓的小狒狒直叫,这时,一直体重是小狒狒一半的小猴子从树上跳到了小狒狒的身上,只见大狒狒离开了地面,被翘了起来,你知道小猴子有多重吗?
解:设小猴子的体重为X kg,
33≤X+2X
33≤3X
X≥11
故X≥11kg
29. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(115+112)×3+x12=1, 解这个方程,15+14+x12=1
12+15+5x=60 5x=33 ∴ x=335=635 答:略.
30. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。
(1)分析:相遇问题,画图表示为:
等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480
解这个方程,230x=390 ∴ x=11623答:略.
分析:相背而行,画图表示为:
等量关系是:两车所走的路程和+480公里=600公里。
解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x=1223
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4 答:略.
分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。
解:设x小时后快车追上慢车。由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6答:略.
分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 解得, x=11.4
31一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
分析:探究题目中隐含的条件是关键,可直接设出成本为X元
进价 折扣率 标价 优惠价 利润
x元 8折 (1+40%)x元 80%(1+40%)x 15元
等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15
解:设进价为X元,80%X(1+40%)—X=15,X=125 答:略.
32. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
分析:等量关系:本息和=本金×(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108
所以年利率为0.0108×2=0.0216
33、甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度.
解析: 设甲、乙的速度分别为x千米/时和y千米/时.第一种情况:甲、乙两人相遇前还相距3千米.根据题意,得
第二种情况:甲、乙两人是相遇后相距3千米.根据题意,得
答:甲、乙的速度分别为4千米/时和5千米/时;或甲、乙的速度 分别为 千米/时和 千米/时.
裤子才能配套,用360米生产上衣,240米生产裤子才能配套,共能生产240套。4.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元? 4.解:设该电器每台的进价为x元,定价为y元.答:该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.5.解:设用xm3木料做桌面,ym3木料做桌腿.(2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.5.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.5.:设用xm3木料做桌面,ym3木料做桌腿.2)6×50=300(张).答:用6m3木料做桌面,4m3木料做桌腿恰好能配成方桌,能配成300张方桌.6.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离. 设A、B两地相距xkm,乙每小时走ykm,则甲每小时走(y+2)km7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元问:1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?
二、帮帮忙给一套7年级下册数学题,一套,待答案,急!1111
给你九套九江师专附中七年级2月份月考数学试卷
班级 姓名 得分
一、 我会选(每题3分,共24分)
1.在代数式 , , , , ,0中,单项式的个数是( )
(A)1 (B)2 (C)3 (D)4
2. 多项式 的次数是( )
(A)2 (B)3 (C)5 (D)0
3. 与 的和是( )
(A) (B) (C) (D)
5. 下列运算中正确的是( )
A、a2•(a3)2= a8 B、
C、 D、
6.下列计算结果错误的是( )
A、(a + b)3÷(a + b) = a2 + b2 B、(x2 )3 ÷(x3 )2 = 1
C、(- m)4÷ (- m)2 = (- m)2 D、(5a)6÷(- 5a)4 = 25a2
7. 计算 的结果等于( )
(A)0 (B) (C) (D)
8.下列式子中一定成立的是( )
A、(a - b)2 = a2 - b2 B、(a + b)2 = a2 + b2
C、(a - b)2 = a2 -2ab + b2 D、(-a - b)2 = a2 -2ab + b2
二、 我来填(每空4分,共24分)
1.请你写出一个单项式,使它的系数为-1,次数为3。答: 。
2.用小数表示: 。
3.计算:① ,
② ,
③ 。
4.计算:(-5a + 4b)2=_________________ 。
三.我来算(每题5分,共40分)
1.(-3)-2-(3.14-π)0
2.
3.
4.(0.1-2x)(0.1+2x)
5.(x+1)(x+3)-(x-2)2
6.(a+b+3)(a+b-3)
7.(9x2y - 6xy2 + 3xy )÷( 3xy )
8.先化简后求值: ,其中
四.我能想(第1题5分,第2题7分)
1.已知某长方形面积为 ,它的一边长为 ,求这个长方形的另一边。
2. (1) 观察下列各式:
……
你发现了什么规律?试用你发现的规律填空:
(每空2分)
(2) 请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.( 3分 )
二
二OO三年重庆市79中学七年级(下)
数 学 试 卷
(全卷六大题30小题 满分:150分 时限:120分钟)
一、 选择题:(每小题4分,共48分)
(1) ( )
(A) (B) (C) (D)
(2)下列运算正确的是( )
(A) (B) (C) (D)
(3) ( )
(A) (B)1 (C)0 (D)2003
(4)设 ,则 ( )
(A) (B) (C) (D)
(5)用科学记数方法表示 ,得( )
(A) (B) (C) (D)
(6)已知
(A) (B) (C) (D)
(7)
(A) (B) (C) (D)52
(8)一个正方形的边长增加了 ,面积相应增加了 ,则这个正方形的边长为( )
(A)6cm (B)5cm (C)8cm (D)7cm
(9)计算: 的结果为( )
(A) (B) 1000 (C) 5000 (D) 500
(10) ,括号内应填的多项式为( )
(A) (B) (C) (D)
(11)
(A) (B) (C) (D)
(12)一个多项式的平方是 ,则 ( )。
(A) (B) (C) (D)
二、 填空题:(每小题4分,共40分)
(1)计算: .
(2)计算: .
(3)若 ,则 .
(4)计算: .
(5)填空:
(6)方程 的解是_______。
(7)已知 。
(8) , , 。(9)小明和小刚在一次赛跑比赛中,小明的速度与小刚速度之比为3:2,若小明的速度为
b米/秒,两人同时同一地点起跑,跑了t秒后,两人的距离为 米。
(10)如图,在第20个白色的球的前面,黑色的球共有 个
、、、、、、、、、、
三、计算题:(每小题5分,共10分)
四、解答题:(每小题8分,共24)
1、先化简要求值: 其中 ,
2、长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的 。求原面积。(8分)
3、(1)观察下列各式: ……
你发现了什么规律?试用你发现的规律填空:
(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性. (8分)
五、解答题(每题10分,共20分)
1、已知、
(1) 求: (3分)
(2) 求: (3分)
(3) 求: (4分)
2、已知:两个等腰直角三角形( )边长分别为a和b( )如图放置在一起,连接AD,
(1) 求阴影部分( )的面积 (4分)
(2) 如果有一个 点正好位于线段 的中点,连接 、 得到 ,求 的面积(4分)
(3) (2)中的三角形 比(1)中的 面积大还是小,大(小)多少?(2分)
六、解答题(8分)
已知
求: 的值.
三
七年级数学课堂检测卷1
姓名: 学号:
1.下列计算正确的是( )
A、x2+x3=2x5 B、x2•x3=x6 C、(-x3)2= -x6 D、x6÷x3=x3
2.下列乘法中,不能运用平方差公式进行运算的是( )
A、(x+a)(x-a) B、(b+m)(m-b) C、(-x-b)(x-b) D、(a+b)(-a-b)
3.计算(-a -b)2的结果是( )
A、-a2-2ab-b2 B、a2-2ab+b2 C、a2+2ab+b2 D、-a2-2ab+b2
4.已知m+n=2,mn= -2,则(1-m)(1-n)的值为( )
A、-1 B、1 C、5 D、-3
5.国家质检总局出台了国内销售纤维制品的甲醛含量标准,从2003年1月1日起正式实施.该标准规定:针织内衣、被套、床上用品等直接接触皮肤的制品,,甲醛含量应在百万分之七十五以下.百万分之七十五用科学计数法表示应写成( )
A、7.5×10-6 B、7.5×10-5 C、7.5×10-4 D、7.5×105
6.多项式x2y-2xy+3的次数是 ,二次项的系数是 .
7.资料表明,到2000年底,我省省级自然保护区的面积为35.03万公顷,这个近似数
有 个有效数字.精确到 位。
8.计算 (-m2n)2的结果是 .
9.若ax=2,ay=3,则ax+y= .
10.已知a+b=2,a2+b2=5,则ab= .
11.如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于a、b的恒等式 .
12.观察下列顺序排列的等式:9×0+1=1
9×1+2=11
9×2+3=21
9×3+4=31
9×4+5=41
……
猜想:第n个等式(n为正整数)应为 .
13..先化简再求值: ,其中
14已知AB=CD,BE=DF,AE=CF,问AB‖CD吗?
七年级数学课堂检测卷2
姓名: 学号:
1、 1纳米相当于一根头发丝直径的六万分之一,那么一根头发丝的
半径为 米(用科学计数法表示)
2、一只蚂蚁的重量约为0.0002㎏,用科学计数法记为
用科学计数法表示的数3.02×10-8,其原数为
3、小东买了12.65kg苹果,精确到0.1kg,则所买苹果约为 kg
4.北冰洋的面积是1475.0万平方千米,精确到( )位,
有( )个有效数字
(A)十分位,四 (B)十分位,五 (C)千位,四 (D)千位,五
5、数4.8×105精确到 位,有 个有效数字,是
6、数5.31万精确到 位,有 个有效数字,是
7.∠A的余角是20°,那么∠A的补角等于__________度.
8、∠A与∠B互补,如果∠A=36°,那么∠B的度数为_________.
9、如图,AB‖ED,则∠A+∠C+∠D=( )
A.180° B.270° C.360° D.540°
10、下列条件中,不能判定三角形全等的是 ( )
A.三条边对应相等 B.两边和一角对应相等
C.两角的其中一角的对边对应相等 D.两角和它们的夹边对应相等
11、如果多项式 是一个完全平方式,则m的值是( )
A、±3 B、3 C、±6 D、6
12.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )
A、第一次向右拐50°,第二次向左拐130°; B、第一次向左拐30°,第二次向右拐30°;
C、第一次向右拐50°,第二次向右拐130°; D、第一次向左拐50°,第二次向左拐130°;
13、 解方程: 14 若 , ,求 的值
15、 图(四—1)在△ABC中,∠B=40 ,∠BCD=100 ,EC平分∠ACB,求∠A与∠ACE的度数。
七年级数学课堂检测卷3
姓名: 学号:
1.用1、2组成一个两位数,则组成的数是奇数的概率是_________
2.用1、2、3三个数字排成一个三位数,则排出的数是偶数的概率是________
3、在△ABC,AB=5,BC=9,那么 <AC<
4、一个三角形的两边长分别是3和8,而第三边长为奇数,那么第三边长是
5、已知一个等腰三角形的一边是3cm,一边是7cm,这个三角形的周长是
6、知△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A= 度,∠B= 度∠C= 度。
7、如上图,∠1=60°,∠D=20°,则∠A= 度
8、如上图,AD⊥BC,∠1=40°,∠2=30°,则∠B= 度,∠C= 度
9.如图,直线l1‖l2,AB⊥l1,垂足为O,BC与l2相交与点E,若∠1=43°,则∠2= 度.
10、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是_________
11、图象题
1、 甲、乙两人(甲骑摩托车,乙骑自行车)从A城出发到100千米处的B城旅游,如右图表示甲、乙两人离开A城路程与时间之间的关系图象。
(1)分别求出甲、乙两人这次旅程的平均速度是多少?
(2)根据图象,你能得出关于甲、乙两人旅行的那些信息?
注:回答2时注意以下要求:
(1)请至少提供三条相关信息,如由图象可知,乙比甲早出发4小时(或甲比乙晚出发4小时)等;(2)不要再提供(1)列举的信息。
七年级数学课堂检测卷4
姓名: 学号:
1 可以写成 ( )
A B C D ÷
2 若4a +2ka +9是一个完全平方式,则k 等于 。
3 已知 =9,ab = 则 + 的值等于 。
4 如图O为直线AB上一点,OM平分∠AOC,ON平分∠BOC, 则图中互余的角有 ( )
A 1对 B 2对 C 3对 D4对
5 纳米是一种长度单位,它用来表示微小的长度,1纳米为10亿分之一米,用科学记数法表示为
。
6 如图是一个转盘被等分成了4份,自由转动转盘,停止后指针指向黄色区域的概率是 ( )
A B C D 不确定
7 下列长度的三条线段,能组成三角形的是 ( )
A1,2,3 B 1,4,2 C 2,3,4 D 6,2,3
8.2000年中国第五次人口普查资料表明,我国的人口总数为1295330000人,请把它取近似数精确到千万位,并用科学记数法表示为__________这个近似数有___个有效数字。
9.已知三角形的三边长为3,5,x 则第三边长 x的取值范围是_________若三角形周长为偶数,则x=________
10、日常生活中,我们经常要煮开水,下表为煮开水的时间与水的温度的描述。
时间(分) 1 2 3 4 5 6 7 8 9 10 11 12 13
温度(℃) 25 29 32 43 52 61 72 81 90 98 100 100 100
(1) 根据上表的数据,我们得到什么信息?
(2) 在第9分钟时,水可以喝吗?为什么?在11分钟时呢?
(3) 根据表格的数据判断:在第15分钟时,水的温度为多少高呢?
(4) 随着加热时间的增长,水的温度是否回一直上升?说明你判断的依据。
七年级数学课堂检测卷5
姓名: 学号:
1. 在下列条件中能判定⊿ABC为直角三角形的是 ( )
A ∠A+∠B=2∠C B ∠A=∠B=30°
C ∠A=2∠B=3∠C D ∠A= ∠B= ∠C
2. 在⊿ABC和⊿DEF中若∠A=∠D, BC=EF, 下列条件不能使 ⊿ABC≌⊿DEF的是 ( )
A ∠B=∠DEF B ∠ACB=∠F C AB=DE D AC‖DF
3.小明不慎将三角形模具打碎为四块,若他只带其中一块到商店去就能还配一块与原来一模一样的三角形模具,应带( )块去合适
A B C D
4.若- 与 是同类项,则m= ______ ,n=_______ 。
5. 已知 =2, =3则
6. 如图由条件_____________可得AB‖CD,理由是___________________
7.袋中装有4个白球和8个红球,每个球除颜色外完全相同,从袋中任意摸一球,则
P(摸到红球)=______P(摸到黑球)=______
8. 2004 -2 +( ) +2003
9,已知线段a和∠α,用尺规作⊿ABC,使BC=a,∠B=∠α,∠C=2∠α
a
10. (1+a-b) (1-a+b)
α
七年级数学课堂检测卷5
姓名: 学号:
1.在⊿ABC中∠A+∠B=80°,∠C=2∠A, 则∠C=_____,∠B=_______
2. 已知如图∠B=∠DEF,AB=DE, 要说明⊿ABC≌⊿DEF
①若以“SAS”为依据,还缺条件__________________
②若以“ASA”为依据,还缺条件__________________
3. 如图AD⊥BD,CF⊥BC, BE⊥AE,则 ⊿ABC的边BC的高是_______边AC的高________
4. 如图,已知∠B=∠C,AB=AC,则图中全等三角形有_________________
5.百万分之七十五用科学计数法表示应写成 。
6.已知a+b=3,a2+b2=5,则ab= .
7.请你设计一个游戏,并制定游戏规则,使自己获胜的概率为
8.(2x -3x+1)+(-3x +5x-7)
9.已知CD‖AB,DF‖EB,DF=EB,问AF=CE吗?说明理由。
10. 沿着图中的线划分为两个全等图形
四
七年级(下)数学第三章 单元检测
一、填空题(每空3分)
1、一本100页的书大约厚0.6厘米,那么一页纸大约厚_______米。
2、地球上的海洋面积约为3.6亿平方千米,那么3.6亿平方千米是_______。(近似数还是精确值)
3、银原子的直径为0.0003微米,用科学记数法可表示为_______微米。
4、据统计,每注足球彩票,一等奖中奖可能性约为0.000627,请问这个可能性精确到______位。
5、一根木棒长4.69米,则 ______是精确的,_______是由四舍五入得到的。
6、近似数3.50精确到_______位,有______有效数字,分别为_______。
7、一个小立方块的边长为0.01米,则它的体积是______米。(用科学记数法表示)
8、2001年末A市总人口为5630400人,四舍五入到万位,得_____人,有效数字为_______。
二、选择题(每小题3分)
1、氢原子的直径为0.1纳米,(1纳米=10-9米),如果把氢原子首尾连接起来,达到1毫米需要氢原子的个数是( )
A、100000 B、1000000 C、10000000 D、100000000
2、某种原子的半径为0.0000000002米,用科学记数法可表示为( )。
A、0.2×10-10米 B、2×10-10米
C、2×10-11米 D、0.2×10-11米
3、(1)数学书有219页 (2)2050年全世界人口有90亿
(3)课桌的长度为96.5厘米 (4)小明全家有5口人
(5)中国的国民生产总值占日本的20%。以上数据中是近似数据的是( )
A、1、3、5 B、2、3、4 C、2、3、5 D、1、2、5 4、太阳的半径是696000000m,精确到千万位时有效数字是( )
A、7、0 B、6、9 C、6、9、6 D、7、0、6 5、在世界新生儿图中各个国家的面积代表的是( )
A国土面积 B、人口密度 C、新生儿数 D、人口总数 6、近似数12.05不能由哪个数四舍五入得到( )
A、12.051 B、12.052 C 、12.045 D、12.044
三、解答题
1、(8分)用科学记数法表示下列结果:
(1) 2002年上半年,我国农业银行存款已超过2千亿元。
(2) 2002年1—2季度,国内生产总值达45535.8亿元,农林牧渔业总值按现行价格计算为9261.7亿元。
(3) 2001年,实施“西气东输”工程后,我国天然气的生产量达303.4亿立方米。
花粉的直径为0.000031米。
2、(10分)地球绕太阳的转动速度为每小时通过去110000千米,那么一昼夜它通过多少千米?每通过1千米需要多少时间?
4、(40分)以下是某年世界十大企业排名情况:(按营业额 单位:百万美元)
1、三菱(日本)1843.65 6、丸红(日本)161057.4
2、三井(日本)181518.7 7、福特汽车(美国)137137.0
3、伊藤忠(日本)169164.6 8、丰田汽车(日本)111052.0
4、通用汽车(美国)168862.6 9、埃克森石油(美国)110009.0
5、住友商事(日本)167530.7 10、荷兰皇家/壳牌(英/荷)109833.7
(1)从以上排名及营业额情况,你能获得什么信息?
(2)根据题目选择适当的统计图来表示世界十大企业的分布情况。
(3)如果要利用面积来表示这十大企业的营业额,这十大企业所占的面积比大约是多少?
五
七年级(下)数学单元测试卷
整式的运算
班级____________ 姓名_____________ 座号_______
一、 选择题(2×4=8)
1、下列计算正确的是 ( )
A、2a-a=2 B、x3+x3=x6 C、3m2+2n=5m2n D、2t2+t2=3t2
2、下列语句中错误的是 ( )
A、数字 0 也是单项式 B、单项式 a 的系数与次数都是 1
C、 x2 y2是二次单项式 C、- 的系数是 -
3、下列计算正确的是 ( )
A、(-a5)5=-a25 B、(4x2)3=4x6 C、y2•y3-y6=0 D、(ab2c)3=ab2c3
4、(x+5)(x-3)等于 ( )
A、x2 -15 B、x2 + 15 C、x2 + 2x -15 D、 x2 - 2x - 15
二、 填空题(3×7=21)
1、代数式4xy3是__项式,次数是__
2、代数式 是__项式,次数是__
3、(2x2y+3xy2)-(6x2y-3xy2)=________________
4、 =__________________
5、(3x+7y)•(3x-7y)=________________
6、(x+2)2-(x+1)(x-1)=______________
7、在括号里填入适当的代数式:2-[2(x+3y)-3( )]=x+2
三、 解答题(6×10+5+6=71)
1、把一张边长为4a的正方形纸板的四个角分别剪一个边长为a正方形(如图),使得可以做成一个无盖的长方体,求剪完后所得图形的总面积
2、 3、(3a+2b)2-b2
4、用完全平方公式计算20012 5、用平方差公式计算2004×1996
6、(3x+9)(6x+8) 7、(a-b+2)(a-b-2)
8、
9、(3mn+1)(3mn-1)-8m2n2
10、(2x2)3-6x3(x3+2x2+x)
11、在括号内填上适当的数;
53×63=30( ) 5n×6n=30( ) ;若105=10n,则n=( )
解方程:3x+1•2x+1=62x-3
12、(1)化简:(2-1)(2+1) (22+1) (24+1)…(232+1)+1
(2)请写出上式结果的个位数字。
先给你五套吧 呵呵呵
三、七年级数学题100道
数学练习题的锻炼,极大地激发了广大少年 儿童 学习数学的兴趣,成为引导少年积极向上,主动探索,渴望获得更多知识,积累更多 经验 。下面就是我为大家梳理归纳的内容,希望能够帮助到大家。
七年级数学 题100道
1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加 军训 队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行 野营 拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
小学数学应用题综合训练(08)
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车 修理 用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取 分数线 ,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分 方法 是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女 生的10倍,但其总得分只为女 生得分的4.5倍,问共有几名女 生参赛?女 生共得几分?
小学数学应用题综合训练(09)
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中的数值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女 生少先队员比男生非少先队员多几人?
83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
小学数学应用题综合训练(10)
91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
关于初二下册数学练习题的问题,通过《帮帮忙给一套7年级下册数学题,一套,待答案,急!1111》、《七年级数学题100道》等文章的解答希望已经帮助到您了!如您想了解更多关于初二下册数学练习题的相关信息,请到本站进行查找!