158文章网欢迎您
您的位置:158文章网 > 范文示例 > 六年级数学:100道精选奥数题汇总,打印吃透,考试难下90分

六年级数学:100道精选奥数题汇总,打印吃透,考试难下90分

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享六年级奥数题的知识,文中也会对其通过六年级数学:100道精选奥数题汇总,打印吃透,考试难下90分和我要六年级奥数题100道,不要太容易,要学过的知识,但不要解方程。要有答案。等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 六年级数学:100道精选奥数题汇总,打印吃透,考试难下90分
  • 我要六年级奥数题100道,不要太容易,要学过的知识,但不要解方程。要有答案。
  • 六年级上册奥数题 100道
  • 六年级分数奥数题目应用题100道
  • 一、六年级数学:100道精选奥数题汇总,打印吃透,考试难下90分

    六年级数学:100道精选奥数题汇总,打印吃透,考试难下90分!

    小学奥数的学习目的是为了培养小学生的数学思维,另外小学奥数比较好的孩子,在初高中的数理化成绩突出的概率也非常大。要学好奥数,除了依靠孩子们平时的积累和坚持,还要讲究学习方法。

    复习是巩固和强化所学知识必不可少的手段,是学习过程中至关重要的环节,复习不是机械地重复,更应该包含着对所学知识的正确理解和灵活运用。复习可以把平时在每个课时中学到的零碎知识系统化,让同学们从整体上把握所学的内容。

    可以毫不夸张的说,只要掌握了典型的奥数题,小学所学就学好了三分之一。所以,同学们想要在数学考试中拿高分,就一定要掌握并且吃透经典的奥数题型,这样不仅在思维上会得到很大的进步和突破,面对数学难题也更有信心。

    今天我整理了小学六年级数学的经典奥数题目汇总,还附带了答案和解析,非常有针对性,建议家长们可以为孩子收藏打印一份,我相信这对于提高孩子的综合能力会有很大的帮助,在考试中也能取得不错的分数。

    更多完整版、打印版资料都可以通过文末方式领取!

    由于篇幅原因,今天的内容就到这里了,如需更多完整word版学习资料,学习方法,都可以关注通过下方方式找我免费领取!

    一、我要六年级奥数题100道,不要太容易,要学过的知识,但不要解方程。要有答案。

    . 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
    2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
    3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
    4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
    5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
    6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
    7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
    8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
    9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
    10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
    小学数学应用题综合训练(02)
    11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
    12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
    13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
    14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
    15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
    16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
    17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
    18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
    19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
    20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
    小学数学应用题综合训练(03)
    21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
    22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
    23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
    24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
    25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
    26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
    27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
    28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
    29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
    30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
    小学数学应用题综合训练(04)
    31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
    32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
    33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
    34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
    35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
    36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
    37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
    38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
    39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
    40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
    小学数学应用题综合训练(05)
    41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
    42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
    43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
    44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
    45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
    46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
    47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
    48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
    49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
    50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
    小学数学应用题综合训练(06)
    51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
    52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
    53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
    54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
    55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
    56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
    57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
    58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
    59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
    60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
    小学数学应用题综合训练(07)
    61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
    62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
    63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
    64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
    65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
    66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
    67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
    68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
    69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
    70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
    小学数学应用题综合训练(08)
    71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
    72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
    73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
    74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
    75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
    76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
    77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
    78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
    79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
    80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
    小学数学应用题综合训练(09)
    81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
    82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
    83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
    84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
    85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
    86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
    87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
    88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
    89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
    90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
    小学数学应用题综合训练(10)
    91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
    92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
    93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
    94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
    95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
    96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
    97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
    98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
    99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
    100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?

    二、六年级上册奥数题 100道

    1.公园只售两种门票:个人票每张5元,l0人一张的团体标每张如元,购买10张以上团体票者可优惠l0%

    (1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?

    (2)乙单位208人逛公园,按以上规定买票,最少应付多少钱?

    2.用无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体(如右图),大正方体内的对角线,,,所穿过的小正方体都是红色玻璃小正方 体,其它部分都是无色透明玻璃小正方体,小红正方体共用了40l个.问:无色透明小正方体用了多少个?

    3.a是自然数,且17a=,求a的最小值.

    4.对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加l。如此进行直到为l时操作停止。问:经过9次操作变为1的数有多少个?

    5.已知m,n,k为自然数,m≥n≥k,是100的倍数,求m+n-k的最小值。

    6.1998个小朋友围成一圈,从某人开始,逆时针方向报数,从l报到64,再依次从l报到64,一直报下去,直到每人报过l0次为止。问:

    (1)有没有报过5,又报过l0的人?有多少?说明理由;

    (2)有没有报过5,又报过ll的人?有多少?说明理由;

    1.【解】(1)45个人,应当买4张团体票(每张10人),5张个人票,共用:30×4+5×5=145元(比5张团体票省)。

    (2)208个人,可以买21张团体票(每张10人),共用:30×21×(1-10%)=3×21×9=567元,

    如果买20张团体票,8张个人票,共用:30×20×(1-10%)+5×8=580元

    由于购买10张以上团体票的可以优惠10%,所以208人买21张团体票反而省钱.本题答案应当是567元

    2.【解】、、、,四条对角线都穿过在正中央的那个小正方体,

    除此而外,每两条对角线没有穿过相同的小正方体,所以每条对角线穿过+1=101个小正方体

    这就表明大正方体的每条边由101个小正方体组成因此大正方体由

    1013个小正方体组成,其中无色透明的小正方体有

    1013-401=1030301—40l=1029900,

    即用了1029900个无色透明的小正方体.

    3.【解】由除法(不断在右面添写1直到整除为止)得

    a的最小值是65359477124183

    4.【解】可以先尝试一下,得出下面的图:

    其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的8个,即11,24,10,28,13,64,31,30.

    于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…(1)

    这一串数有个特点:自第三个开始,每一个等于前两个的和,即:

    2=1+1,3=2+1,5=3+2,8=5+3,…

    如果这个规律正确,那么8后面的数依次是:

    8+5=13,13+8=21,21+13=34,…

    即经过9次操作变为1的数有34个。

    为什么上面的规律是正确的呢?

    道理也很简单.设经过n次操作变为1的数的个数为,则=1,=1,=2,…

    从上面的图看出,比大.一方面,每个经过n次操作变为1的数,乘以2,就得出一个偶数,经过n+1次操作变为1;反过来,每个经过n+1次操作变为1的偶数,除以2,就得出一个经过n次操作变为1的数.所以经过n次操作变为1的数与经过n+1次操作变为1的偶数恰好一样多.前者的个数是,因此后者也是个。

    另一方面,每个经过n次操作变为1的偶数,减去1,就得出一个奇数,它经过n+1次操作变为1,反过来每个经过n+1次操作变为1的奇数,加上1,就得出一个偶数,它经过n次操作变为1.所以经过n次操作变为1的偶数与经过n+1次操作变为1的奇数恰好一样多.而由上面所说,前者的个数就是,因此后者也是.

    经过,n+1次操作变为1的数,分为偶数、奇数两类,所以=+(2)

    即上面所说的规律的确成立。

    满足规律(2),并且==1的一串数(1)称为斐波那契数.斐波那契(Fibonacci,约1175-1250)是意大利数学家,以他名字命名的这种数列有很广泛的应用

    5.【解】首先注意100=22×52

    如果,n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的,所以n-k≥1

    2m十2n-2k=2k(2m-k+2n-k-1)被22整除,所以k≥2

    设a=m-k,b=n-k,则a≥b.而且都是正整数

    2a+2b-1被52整除,要求a+b+k=m+n-k的最小值,

    不难看出:210+21-1=1025

    被25整除,所以a+b+k的最小值≤1O+1十2=13

    而且在a=10,b=1,k=2时,上式等号成立

    还需证明在a+b≤10时,2a+2b-1不可能被52整除

    列表如下:

    a≤3时,2a+2b-1<8+8=16不被52整除.其它表中情况,不难逐一检验,均不满足2a+2b-1被25整除的要求

    因此a+b+k即m十n-k的最小值是13

    6.【解】首先注意:1998=64×31+14(1)

    所以第一次报5的人,第二次报5+14,第三次报5+14×2,…,第K+1次报5+14K(K=0,1,…,9),当然在5+14K超过64时,要减去64的倍数,直至差不大于64。因为5是奇数,14,64是偶数,所以5十14K-64H一定是奇数,不可能为10,即没有报过5,又报10的人

    每个第一次报5的人.第二、三、四、五、六次依次报

    5+14,5+14×2,

    5+14×3,5+14×4

    5+14×5—64=11.

    因为5×1998=9990=156×64+6

    所以在前五轮报数中,有157(=156+1)个人报5,这些人在10轮报数中,又报过11,而后五轮报5的人,不可能再报11,在前五轮报1的人,以后报

    11+14,11+14×2,11+14×3,11十14×4-64=3,3十14,3+14×2,

    3+14×3,3+14×4,3+14×5-64=9不报5

    因此,报过5,又报过11人,有157人
    希望对你有帮助!
    1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

    2. 有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

    3. 某工程,由甲、乙两队承包,2。4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

    4. 一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

    5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

    6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

    7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?

    8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。

    9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

    10. 今有重量为3吨的集装箱4个,重量为2。5吨的集装箱5个,重量为1。5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4。5吨的汽车可以一次全部运走集装箱?
    11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

    12. 一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。

    13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时。。。。。。。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?

    14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

    15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

    16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

    17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。那么甲、乙丙三数之和是几?

    18. 一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?

    19. 某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?

    20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
    21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0。4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

    22. 某公司要往工地运送甲、乙两种建筑材料。甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

    23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

    24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5。两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

    25. 六年级五个班的同学共植树100棵。已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

    26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。乙总共跑了多少千米?

    27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米。容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米。容器的高度是多少厘米?

    28. 有104吨的货物,用载重为9吨的汽车运送。已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成。

    29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

    30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。去时用了4天,回来时用了3天,问学校距离百花山多少千米?
    呵呵就这么多了,希望对你有帮助。选我吧

    三、六年级分数奥数题目应用题100道

    1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?

    2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?

    3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?

    4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?

    5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?

    6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?

    7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?

    8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?

    9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?

    10.(周期问题)2006年7月1日是星期六,求10月1日是星期几?

    11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。0.8元一本的练习本有多少本?

    12.(年龄问题)5年前父亲的年龄是儿子的7倍。15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?

    13.(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。求有多少个学生?有多少个笔记本?

    14.(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果店里原来一共有多少个芒果?

    15.(置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?

    16.(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?

    17.(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?

    ⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?

    19. (鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?

    20. (相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米?

    例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?

    例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?

    例3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?

    例4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?

    例5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?

    例6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?

    例7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?
    先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。

    例8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。

    例9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人?
    追问
    分数分数分数分数分数好不好,
    回答
    是分数啊
    0
    2011-10-9 20:13 单艺伟 | 二级
    (过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?

    (错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?

    (行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
    0
    2011-10-10 17:30 szq20080515 | 二级
    1.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,一张门票降价是 元.

    2.把一根绳子分别等分折成5股和6股,如果折成5股比6股长20厘米,那么这根绳子的长度是 厘米.

    3.张、王、李三人共有54元,张用了自己钱数的 ,王用了自己钱数的 ,李用了自己钱数的 ,各买了一支相同的钢笔,那么张和李两人剩下的钱共有
    元.

    4.某工厂的27位师傅共带徒弟40名,每位师傅可以带一名徒弟、两名徒弟或三名徒弟.如果带一名徒弟的师傅人数是其他师傅的人数的两倍,那么带两名徒弟的师傅有 位.

    5.李明到商店买一盒花球,一盒白球,两盒球的数量相等.花球原价是1元钱2个,白球原价是1元钱3个.节日降价,两种球的售价都是2元钱5个,结果李明少花了4元钱,那么他共买了 个球.

    6.把100个人分成四队,一队人数是二队人数的 倍,一队人数是三队人数的 倍,那么四队有 人.

    7.有一篓苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个,如果每个苹果1元9角8分,那儿这篓苹果共值 元.

    8.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有 本书.

    9.一条绳子第一次剪掉1米,第二次剪掉剩余部分的 ,第三次剪掉1米,第四次剪掉剩余部分的 ,第五次剪掉1米,第六次剪掉剩余部分的 ,这条绳子还剩下1米.这条绳子原长 米.

    10.某班学生参加一次考试,成绩分优、良、及格、不及格四等.已知该班有 的学生得优,有 的学生得良,有 的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有 人.
    二、解答题
    11.有梨和苹果若干个,梨的个数是全体的 少17个,苹果的个数是全体的 少31个,那么梨和苹果的个数共多少?

    12.某中学初中共780人,该校去数学奥校学习的学生中,恰好有 是初一的学生,有 是初二的学生,那么该校初中学生中,没进奥校学习的有多少人?

    13.小明从家到学校有两条一样长的路,一条是平路,另一条的一半是上坡路,一半是下坡路,小明上学两条路所用时间一样,已知下坡的速度是平路的 倍,那么上坡路的速度是平路的多少倍?

    14.在编号为1, 2, 3的三个相同的杯子里,分别盛着半杯液体.1号杯中溶有100克糖,2号杯中是水.3号杯中溶有100克盐.先将1号杯中液体的一半及3号杯中液体的 倒入2号杯,然后搅匀.再从2号杯倒出所盛液体的 到1号杯.按着倒出所余液体的 到3号杯.问:这时每个杯中含盐量与含糖量之比是多少?

    ———————————————答 案——————————————————————

    1. (元).

    2. (厘米).

    3. 王的钱数是张的 ,李的钱数是张的 ,
    故张原有 (元),李原有 (元),
    张与李共剩下 (元).

    4. 带一名徒弟的师傅人数是 (位);于是带二名或三名徒弟的师傅人数是27-18=9(位),他们共带了40-18=22(名)徒弟.
    假设这9位师傅都带了三名徒弟,就少了 (位)徒弟,这说明5位师傅没有带三名徒弟,而是带两名徒弟.

    5. (个).
    6. 第二队人数是第一队人数的 ;
    第三队人数是第一队人数的 ,
    三队人数和是第一队人数的 .
    由于四队人数和为100人,第一队人数只能是20.
    故第四队有 (人).

    7. (元).

    8. 小峰未借前有书 (本),
    小明未借之前有 (本),
    小刚原有书 (本).

    9. 第六次剪前绳长 (米);
    第四次剪前绳长 =15(米),
    第二次剪前绳长 (米),绳子原长32+1=33米.

    10. 不及格人数占 ,因该班学生人数不超过60人.
    故不及格人数是 (人).

    11. (个).

    12. 该校去数学奥校的学生数只能是17和23的公倍数,即应是 的倍数,又学生去奥校人数应小于780.
    故只能是391人,于是没有去奥校的有780-391=389(人).

    13. .

    14. 最后在1号杯中,含糖 (克);
    含盐 (克),含盐、糖之比为 ;
    在2号杯中,含糖 (克);
    含盐 (克),
    含盐、糖之比为 ;
    在3号杯中,含糖 (克);
    含盐 (克),
    含盐、糖之比为 .

    关于六年级奥数题的问题,通过《六年级上册奥数题 100道》、《六年级分数奥数题目应用题100道》等文章的解答希望已经帮助到您了!如您想了解更多关于六年级奥数题的相关信息,请到本站进行查找!

    本文标签:六年级奥数题(4)

    相关阅读

    • 小学六年级经典必学奥数题集锦及答案

    • 158文章网范文示例
    • 今天小编给各位分享六年级奥数题的知识,文中也会对其通过小学六年级经典必学奥数题集锦及答案和小学五六年级奥数题30道带答案!!等多篇文章进行知识讲解,如果文章内容对您
    • 小学六年级-解奥数题(经典)

    • 158文章网范文示例
    • 今天小编给各位分享小学六年级奥数题的知识,文中也会对其通过小学六年级-解奥数题(经典)和六年级奥数题50道!等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注
    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网