158文章网欢迎您
您的位置:158文章网 > 范文示例 > 数学语言课题中期报告范文 五育并举和学科融合的数学课题?

数学语言课题中期报告范文 五育并举和学科融合的数学课题?

作者:158文章网日期:

返回目录:范文示例

五育并举和学科融合的数学课题?

《数学文化促进五育并举的实践探索研究》可以在数学公开课中融合渗透德育、美育、劳动教育等;将新时代小学“五育”融合策略研究的运用及探索会持续进行,在今后的育人过程中,我们把学生看成是有生命、有智慧、有思想、有情感、会审美、爱劳动的人,把教育教学还原成“五育”并举,融合理想育人氛围,用完整的教育,促进学生全面发展。

小学数学教研课题怎么写?

数学语言课题中期报告范文  五育并举和学科融合的数学课题?

教研课题是指在教学过程中为了对问题进行系统、全面、科学的研究,审批立项的科研课题。

《如何提高小学生对数学的兴趣》《计算器的使用对小学生学习数学的影响》《如何构建和谐的师生关系》《小学数学课新理念》《传统教育模式对学生学习数学的弊端》 。

谁能给我篇数学小论文?

数学语言课题中期报告范文  五育并举和学科融合的数学课题?

最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。

最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。

但解决这类问题需要的基础知识相当广泛,很难做到一一列举。

因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。

[经典例题]例1:货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?[分析]因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。

所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。

例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。

因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。

例2:用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?[分析]一个10尺长的竹竿应有三种截法:(1)3尺两根和4尺一根,最省;(2)3尺三根,余一尺;(3)4尺两根,余2尺。

为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。

例3:一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?[分析]因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86 88 90=264厘米。

例4:把25拆成若干个正整数的和,使它们的积最大。

[分析]先从较小数形开始实验,发现其规律:把6拆成3 3,其积为3×3=9最大;把7拆成3 2 2,其积为3×2×2=12最大;把8拆成3 3 2,其积为3×3×2=18最大;把9拆成3 3 3,其积为3×3×3=27最大;……这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3 3 3 3 3 3 3 2 2,其积37×22=8748为最大。

例5:A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?[分析]设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。

如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。

例6:甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?[分析]根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。

两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产月生产1200件上衣,那么乙厂全月可生产上衣1200÷=2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷=2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服(2100 60)-(900 1200)=60套例7今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?[分析]因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人流每次取P颗,谁最后取完谁获胜。

[解]乙有必胜的策略。

[说明](1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策,关键是看他们所面临的“情形”;(2我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。

若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。

所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。

例8有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?[分析]为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房。

本文标签:

相关阅读

关键词不能为空

范文示例_作文写作_作文欣赏_故事分享_158文章网