作者:158文章网日期:
返回目录:范文示例
数学论文格式范文
【时间:2010-10-06 10:52 来源:未知】
题目要求:引人注目,一般不超过20个字。字体要求:小2号黑体,居中。空一行写摘要。
页面设置要求:页边距上、下、右都为2.5厘米,左边距为3厘米。装订线位置为左。
中学数学与高等数学的和谐接轨
(小二黑体,不加粗)
摘要(小三黑体,不加粗):从中学数学到高等数学,实际上是由具体的、粗浅的数学结构上升到了严谨的公理化体系的论述,由形象思维上升到抽象思维,由特殊到一般,由简单到复杂,由低级到高级。领悟到这一点,再结合中学数学的相关知识去学e5a48de588b6e799bee5baa6333高等数学,就不会觉得艰涩难懂。站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。所以如何实现中学数学和高等数学的和谐接轨,如何在两者之间架一座桥梁是至关重要的。本文从特例分析、数学内容(代数、几何)、数学思想方法等三个方面就接轨问题进行了简要论述。(小四楷体,200字以上)
关键词(小三黑体,不加粗):中学数学 高等数学 数学思想 接轨
(小四楷体,不多于5个)
一般说来,数学史家把数学的发展分成四个阶段:萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期或五个时期(再加上“当代高等数学时期)。
(正文,小四宋体,字数不少于3000字)
参考文献:(小三黑体,不加粗)( 收集整理原创论文)
[1] 唐国庆.湘教版初中数学教案(七年级上册)[M].湖南教育出版社.2008年.
[2] 张禾瑞.近世代数基础(修订本)[M].高等教育出版社.1978年.
(小四宋体,参考文献不少于4个)
论文内容必须是有关数学方面的,专业或教学方面的。
西藏大学(初号隶书加黑居中)
本科生毕业论文(设计)
(小初楷体加黑居中)
题目:(字号二号,宋体,加黑,居中,下划线)
----副标题:(字号三号,宋体,加黑,居中,下划线)
院(部) 专业年级
姓 名 学 号
指导教师 职 称
人民币中的数学问题copy
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:知“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要道2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。
在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.
http://ptc3.fjpt.cn.net/sxx/jingpin/teachersemail/paper/5-guojunmo.doc这里的一篇是偏向交作业的
下面一个是正式发表的双语版本
张彧典人工证明四色猜想 山西盂县党校数学高级讲师
用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。
最后特别感谢英国兰开斯特大学A.lehoyd、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。
附:论文
用“H·Z—CP“求解赫伍德构形
张彧典 (山西省盂县县委党校 045100)
摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。
关键词:H—CP Z—CP H·Z—CP
《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。
为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。
如图1所示:
四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。
在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。
现在具体确立赫伍德构形的不可避免集。
在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。
如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。
其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。
如图3:设图1中有C1-D2链、D1-C2链存在时。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
如图4:设图1中有C1-D2链、B2-A2链存在时。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。
如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。
如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
图9:设图8中有B2-A2链与A1-D1环相交。
其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。
如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。
对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:
若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。
若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。
下面从理论上证明图2—10组成的不可避免集的完备性。
在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:
B1-A2、B1-D2、B2-C2、B2-A2
B1-A2、B1-D2、B2-C2、D1-C2
C1-D2、B1-D2、B2-C2、B2-A2
C1-D2、B1-D2、B2-C2、D1-C2
而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:
A-B与C-D、A-C与B-D、A-D与B-C;
还有12组可相交组合:
A-B与A-C、A-D、B-C、B-D;
A-C与A-D、B-C、C-D ;
A-D与B-D、C-D;
B-C与B-D、C-D;
B-D与C-D。
我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。
到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。
参考文献:
〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
附英e799bee5baa6e79fa5e98193e59b9ee7ad94330文版
Using H·Z-CP Solves Heawood Configuration
Zhang Yu-dian
Yu Xian Party School, Yu Xian 045100, Shanxi, China
Abstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H·Z-CP.
Key words: H-CP Z-CP H·Z-CP
Introduce
Thesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.
For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.
As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.
In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.
As follows, the detailed Heawood configuration’s inevitable sets is given.
Result
It is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.
As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):
Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.
As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.
Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.
As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.
As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.
Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.
In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].
For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.
If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into being.then B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).
If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).
The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.
In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:
B 1-A2、B 1-A2、B2-C2、B2-A2
B 1-A2、B 1-D2、B2-C2、D1-C2
C 1-D2、B 1-D2、B2-C2、B2-A2
C 1-D2、B 1-D2、B2-C2、D1-C2
There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:
A-B and C-D、A-C and B-D、A-D and B-C;
Otherwise there are 12 kinds of intersectant combinations:
A-B and A-C、A-D、B-C、B-D;
A-C and A-D、B-C、C-D ;
A-D and B-D、C-D;
B-C and B-D、C-D;
B-D and C-D。
Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.
By this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.
Bibliography:
〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
方法之一,踩着名家的肩膀,从名家的著作中找灵感,找智慧的语言,然后以此思考自己的教学,就可以写成文章。
方法之二,依台湾王鼎钧创造的e79fa5e98193e4b893e5b19e332方法去写。先在纸上写个大大的“我”字,然后思考自己在教育教学上做了什么,没做什么,做得怎么样,还想怎么做……就一定会写了。坚持十年,其实只要坚持三年,每天写上一点,好文章一定会层出不穷。
方法之三,是开公司,借鉴凡尔纳的思维。多多摘抄好东西,抄过几万条,就会自动生成很多文章、书籍。
方法之四,自费去听一些名家的课、讲座。因为自费去的,肯定就会生成一些文章。公费去的也能写,但公费去的写文章的量不如自费的多。
方法之五,语文教师不妨学学陈省身,学学吴文俊。以欠债还债的思维去做事。读书是欠债,写作是还债。有了这种思维,一定能写出很多文章与书来。
方法之六,以写书思维去经营文章。把书写好了,文章就更棒了!所有的教师都会写书,但因为没有写书的思维,所以文章写起来就难了。一周写一篇,一年就是50多篇,合起来就是一本书。读自己的书,再看自己的文章,就会越变越好。
方法之七,一定要爱上豆腐块。我以前写过好多豆腐块的小文章,被身边人笑话过。但我不怕笑话。这些豆腐块后来都成为了好东西。豆腐块是小思考,聚起来就是大思考。
方法之八,敢于写质疑文章。看出别人的问题,大胆去写。保持一颗尊重人的心,不去恶毒攻击人就行。质疑的文章往往更有力量,更有创造性。活在创造里,那是非常好有意思的。
方法之九,以理科、宗教等学科学写语文教育教学文章。我觉得每年多看点理科的东西,宗教的东西,那里创造性的东西非常好多,可以找到很多好玩的世界,这样自己的文章就会好玩,有可读性。
方法之十,坚持做自己的课题。坚持一辈子做自己的课题。有了课题,有了项目,文章会一篇接一篇的。