158文章网欢迎您
您的位置:158文章网 > 范文示例 > 高中数学必修2所有概念及公式大集合,建议高中同学都收藏

高中数学必修2所有概念及公式大集合,建议高中同学都收藏

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享高中数学必修二教案的知识,文中也会对其通过高中数学必修2所有概念及公式大集合,建议高中同学都收藏和数学必修二所有公式等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 高中数学必修2所有概念及公式大集合,建议高中同学都收藏
  • 数学必修二所有公式
  • 高中数学必修二的知识点总结
  • 高二数学知识点大全必修二
  • 一、高中数学必修2所有概念及公式大集合,建议高中同学都收藏

    导语:学好数学很关键的一点就是灵活运用解题的技巧,善于搭建题目的模型,那么数学的常用公式及概念就很重要了。今天小墨老师和大家整理了高中数学必修2所有的常用公式及基本概念,建议收藏!

    个人简介:专注家庭教育,学习技巧,学业分析的资深老师

    一、数学必修二所有公式

    你好,

    (附件也有)

    高中数学必修2知识点

    希望有所帮助

    一、直线与方程

    (1)直线的倾斜角

    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

    (2)直线的斜率

    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

    当时,;当时,;当时,不存在。

    ②过两点的直线的斜率公式:

    注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

    (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

    (3)直线方程

    ①点斜式:直线斜率k,且过点

    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

    当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

    ②斜截式:,直线斜率为k,直线在y轴上的截距为b

    ③两点式:()直线两点,

    ④截矩式:

    其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

    ⑤一般式:(A,B不全为0)

    注意:1各式的适用范围2特殊的方程如:

    平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

    (5)直线系方程:即具有某一共同性质的直线

    (一)平行直线系

    平行于已知直线(是不全为0的常数)的直线系:(C为常数)

    (二)过定点的直线系

    (ⅰ)斜率为k的直线系:,直线过定点;

    (ⅱ)过两条直线,的交点的直线系方程为

    (为参数),其中直线不在直线系中。

    (6)两直线平行与垂直

    当,时,

    注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

    (7)两条直线的交点

    相交

    交点坐标即方程组的一组解。

    方程组无解;方程组有无数解与重合

    (8)两点间距离公式:设是平面直角坐标系中的两个点,

    (9)点到直线距离公式:一点到直线的距离

    (10)两平行直线距离公式

    在任一直线上任取一点,再转化为点到直线的距离进行求解。

    二、圆的方程

    1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

    2、圆的方程

    (1)标准方程,圆心,半径为r;

    (2)一般方程

    当时,方程表示圆,此时圆心为,半径为

    当时,表示一个点;当时,方程不表示任何图形。

    (3)求圆方程的方法:

    一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

    需求出a,b,r;若利用一般方程,需要求出D,E,F;

    另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

    3、直线与圆的位置关系:

    直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

    (1)设直线,圆,圆心到l的距离为,则有;;

    (2)设直线,圆,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有

    ;;

    注:如果圆心的位置在原点,可使用公式去解直线与圆相切的问题,其中表示切点坐标,r表示半径。

    (3)过圆上一点的切线方程:

    ①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为(课本命题).

    ②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).

    4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

    设圆,

    两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

    当时两圆外离,此时有公切线四条;

    当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

    当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

    当时,两圆内切,连心线经过切点,只有一条公切线;

    当时,两圆内含;当时,为同心圆。

    三、立体几何初步

    1、柱、锥、台、球的结构特征

    (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    (2)棱锥

    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

    (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

    表示:用各顶点字母,如五棱台

    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

    (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

    (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

    (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

    (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

    2、空间几何体的三视图

    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

    俯视图(从上向下)

    注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

      俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    3、空间几何体的直观图——斜二测画法

    斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

    4、柱体、锥体、台体的表面积与体积

    (1)几何体的表面积为几何体各个面的面积的和。

    (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

    (3)柱体、锥体、台体的体积公式

    (4)球体的表面积和体积公式:V=;S=

    4、空间点、直线、平面的位置关系

    (1)平面

    ①平面的概念:A.描述性说明;B.平面是无限伸展的;

    ②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

    也可以用两个相对顶点的字母来表示,如平面BC。

    ③点与平面的关系:点A在平面内,记作;点不在平面内,记作

    点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

    直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。

    (2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

    (即直线在平面内,或者平面经过直线)

    应用:检验桌面是否平;判断直线是否在平面内

    用符号语言表示公理1:

    (3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

    推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

    公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

    (4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

    符号:平面α和β相交,交线是a,记作α∩β=a。

    符号语言:

    公理3的作用:

    ①它是判定两个平面相交的方法。

    ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

    ③它可以判断点在直线上,即证若干个点共线的重要依据。

    (5)公理4:平行于同一条直线的两条直线互相平行

    (6)空间直线与直线之间的位置关系

    ①异面直线定义:不同在任何一个平面内的两条直线

    ②异面直线性质:既不平行,又不相交。

    ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

    ④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

    说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理

    (2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。

    ②求异面直线所成角步骤:

    A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

    (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

    (8)空间直线与平面之间的位置关系

    直线在平面内——有无数个公共点.

    三种位置关系的符号表示:aαa∩α=Aa∥α

    (9)平面与平面之间的位置关系:平行——没有公共点;α∥β

    相交——有一条公共直线。α∩β=b

    5、空间中的平行问题

    (1)直线与平面平行的判定及其性质

    线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

    线线平行线面平行

    线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

    那么这条直线和交线平行。线面平行线线平行

    (2)平面与平面平行的判定及其性质

    两个平面平行的判定定理

    (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

    (线面平行→面面平行),

    (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

    (线线平行→面面平行),

    (3)垂直于同一条直线的两个平面平行,

    两个平面平行的性质定理

    (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

    (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

    7、空间中的垂直问题

    (1)线线、面面、线面垂直的定义

    ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

    ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

    ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

    (2)垂直关系的判定和性质定理

    ①线面垂直判定定理和性质定理

    判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

    性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

    ②面面垂直的判定定理和性质定理

    判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

    性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

    9、空间角问题

    (1)直线与直线所成的角

    ①两平行直线所成的角:规定为。

    ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

    ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

    (2)直线和平面所成的角

    ①平面的平行线与平面所成的角:规定为。②平面的垂线与平面所成的角:规定为。

    ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

    求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

    在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

    在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

    (3)二面角和二面角的平面角

    ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

    ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

    ③直二面角:平面角是直角的二面角叫直二面角。

    两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

    ④求二面角的方法

    定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

    垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

    7、空间直角坐标系

    (1)定义:如图,是单位正方体.以A为原点,

    分别以OD,O,OB的方向为正方向,建立三条数轴。

    这时建立了一个空间直角坐标系Oxyz.

    1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

    (2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

    (3)任意点坐标表示:空间一点M的坐标可以用有序实数组来表示,有序实数组叫做点M在此空间直角坐标系中的坐标,记作(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

    (4)空间两点距离坐标公式:

    二、高中数学必修二的知识点总结

      引导语:数学是一门非常重要的课程,那么高中数学必修二学习时,相关的知识点有哪些呢?接下来是我为你带来收集整理的高中数学必修二知识点总结,欢迎阅读!

      高中数学必修二的知识点总结:立体几何初步

      1、柱、锥、台、球的结构特征

      (1)棱柱:

      几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

      (2)棱锥

      几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

      (3)棱台:

      几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

      (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

      几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.

      (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

      几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.

      (6)圆台:定义:以直角梯形的垂直与底边的.腰为旋转轴,旋转一周所成

      几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.

      (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

      几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.

      2、空间几何体的三视图

      定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

      俯视图(从上向下)

      注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

      3、空间几何体的直观图——斜二测画法

      斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

      ②原来与y轴平行的线段仍然与y平行,长度为原来的一半.

      4、柱体、锥体、台体的表面积与体积

      (1)几何体的表面积为几何体各个面的面积的和.

      (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

      (3)柱体、锥体、台体的体积公式

      高中数学必修二的知识点总结:直线与方程

      (1)直线的倾斜角

      定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

      (2)直线的斜率

      ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

      当时,;当时,;当时,不存在.

      ②过两点的直线的斜率公式:

      注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

      (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

      (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

      (3)直线方程

      ①点斜式:直线斜率k,且过点

      注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

      当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

      ②斜截式:,直线斜率为k,直线在y轴上的截距为b

      ③两点式:()直线两点,

      ④截矩式:

      其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

      ⑤一般式:(A,B不全为0)

      注意:各式的适用范围特殊的方程如:

      平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

      (5)直线系方程:即具有某一共同性质的直线

      (一)平行直线系

      平行于已知直线(是不全为0的常数)的直线系:(C为常数)

      (二)垂直直线系

      垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

      (三)过定点的直线系

      (ⅰ)斜率为k的直线系:,直线过定点;

      (ⅱ)过两条直线,的交点的直线系方程为

      (为参数),其中直线不在直线系中.

      (6)两直线平行与垂直

      注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

      (7)两条直线的交点

      相交

      交点坐标即方程组的一组解.

      方程组无解;方程组有无数解与重合

      (8)两点间距离公式:设是平面直角坐标系中的两个点

      (9)点到直线距离公式:一点到直线的距离

      (10)两平行直线距离公式

      在任一直线上任取一点,再转化为点到直线的距离进行求解.

    三、高二数学知识点大全必修二

      高中数学难度更大,特别是高二数学,具有承上启下的作用,学好数学就是要掌握主要知识点。下面是我给大家带来的高二数学知识点大全必修二,希望对你有帮助。

      高二数学知识点大全必修二

      第1章 空间几何体1

      1 .1柱、锥、台、球的结构特征

      1. 2空间几何体的三视图和直观图

      11 三视图:

      正视图:从前往后

      侧视图:从左往右

      俯视图:从上往下

      22 画三视图的原则:

      长对齐、高对齐、宽相等

      33直观图:斜二测画法

      44斜二测画法的步骤:

      (1).平行于坐标轴的线依然平行于坐标轴;

      (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

      (3).画法要写好。

      5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

      1.3 空间几何体的表面积与体积

      (一)空间几何体的表面积

      1棱柱、棱锥的表面积: 各个面面积之和

      2 圆柱的表面积 3 圆锥的表面积

      4 圆台的表面积

      5 球的表面积

      (二)空间几何体的体积

      1柱体的体积

      2锥体的体积

      3台体的体积

      4球体的体积

      第二章直线与平面的位置关系

      2.1空间点、直线、平面之间的位置关系

      2.1.1

      1 平面含义:平面是无限延展的

      2 平面的画法及表示

      (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)

      (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

      3 三个公理:

      (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内

      符号表示为

      A∈L

      B∈L=> L α

      A∈α

      B∈α

      公理1作用:判断直线是否在平面内

      (2)公理2:过不在一条直线上的三点,有且只有一个平面。

      符号表示为:A、B、C三点不共线 => 有且只有一个平面α,

      使A∈α、B∈α、C∈α。

      公理2作用:确定一个平面的依据。

      (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

      符号表示为:P∈α∩β =>α∩β=L,且P∈L

      公理3作用:判定两个平面是否相交的依据

      2.1.2 空间中直线与直线之间的位置关系

      1 空间的两条直线有如下三种关系:

      共面直线

      相交直线:同一平面内,有且只有一个公共点;

      平行直线:同一平面内,没有公共点;

      异面直线: 不同在任何一个平面内,没有公共点。

      2 公理4:平行于同一条直线的两条直线互相平行。

      符号表示为:设a、b、c是三条直线

      a∥b

      c∥b

      强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

      公理4作用:判断空间两条直线平行的依据。

      3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

      4 注意点:

      ① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

      ②两条异面直线所成的角θ∈(0, );

      ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

      ④两条直线互相垂直,有共面垂直与异面垂直两种情形;

      ⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

      2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系

      1、直线与平面有三种位置关系:

      (1)直线在平面内 —— 有无数个公共点

      (2)直线与平面相交 —— 有且只有一个公共点

      (3)直线在平面平行 —— 没有公共点

      指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示

      a αa∩α=Aa∥α

      2.2.直线、平面平行的判定及其性质

      2.2.1 直线与平面平行的判定

      1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

      简记为:线线平行,则线面平行。

      符号表示:

      a α

      b β=> a∥α

      a∥b

      2.2.2 平面与平面平行的判定

      1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

      符号表示:

      a β

      b β

      a∩b =P β∥α

      a∥α

      b∥α

      2、判断两平面平行的方法有三种:

      (1)用定义;

      (2)判定定理;

      (3)垂直于同一条直线的两个平面平行。

      2.2.3 — 2.2.4直线与平面、平面与平面平行的性质

      1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

      简记为:线面平行则线线平行。

      符号表示:

      a∥α

      a βa∥b

      α∩β= b

      作用:利用该定理可解决直线间的平行问题。

      2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

      符号表示:

      α∥β

      α∩γ= a a∥b

      β∩γ= b

      作用:可以由平面与平面平行得出直线与直线平行

      2.3直线、平面垂直的判定及其性质

      2.3.1直线与平面垂直的判定

      1、定义

      如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

      L

      p

      α

      2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

      注意点:a)定理中的“两条相交直线”这一条件不可忽视;

      b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

      2.3.2平面与平面垂直的判定

      1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

      A

      梭l β

      B

      α

      2、二面角的记法:二面角α-l-β或α-AB-β

      3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

      2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质

      1、定理:垂直于同一个平面的两条直线平行。

      2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

      本章知识结构框图

      第三章 直线与方程

      3.1直线的倾斜角和斜率

      3.1倾斜角和斜率

      1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.

      2、 倾斜角α的取值范围: 0°≤α<180°.

      当直线l与x轴垂直时, α= 90°.

      3、直线的斜率:

      一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是

      k = tanα

      ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;

      ⑵当直线l与x轴垂直时, α= 90°, k 不存在.

      由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

      4、 直线的斜率公式:

      给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

      斜率公式:

      3.1.2两条直线的平行与垂直

      1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

      注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2

      2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即

      3.2.1 直线的点斜式方程

      1、 直线的点斜式方程:直线

      经过点

      ,且斜率为

      2、、直线的斜截式方程:已知直线

      的斜率为

      ,且与

      轴的交点为

      3.2.2 直线的两点式方程

      1、直线的两点式方程:已知两点

      其中

      2、直线的截距式方程:已知直线

      与

      轴的交点为A

      ,与

      轴的交点为B

      ,其中

      3.2.3 直线的一般式方程

      1、直线的一般式方程:关于

      的二元一次方程

      (A,B不同时为0)

      2、各种直线方程之间的互化。

      3.3直线的交点坐标与距离公式

      3.3.1两直线的交点坐标

      1、给出例题:两直线交点坐标

      L1 :3x+4y-2=0

      L1:2x+y+2=0

      解:解方程组

      得 x=-2,y=2

      所以L1与L2的交点坐标为M(-2,2)

      3.3.2 两点间距离

      两点间的距离公式

      3.3.3 点到直线的距离公式

      1.点到直线距离公式:

      点

      到直线

      的距离为:

      2、两平行线间的距离公式:

      已知两条平行线直线

      和

      的一般式方程为

      :

      ,

      :

      ,则

      与

      的距离为

      第四章圆与方程

      4.1.1 圆的标准方程

      1、圆的标准方程:

      圆心为A(a,b),半径为r的圆的方程

      2、点

      与圆

      的关系的判断方法: (1)

      >

      ,点在圆外 (2)

      =

      ,点在圆上 (3)

      ,点在圆内

      4.1.2 圆的一般方程

      1、圆的一般方程:

      2、圆的一般方程的特点:

      (1)①x2和y2的系数相同,不等于0.

      ②没有xy这样的二次项.

      (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.

      (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

      4.2.1 圆与圆的位置关系

      1、用点到直线的距离来判断直线与圆的位置关系.

      设直线

      :

      ,圆

      :

      ,圆的半径为

      ,圆心

      到直线的距离为

      ,则判别直线与圆的位置关系的依据有以下几点: (1)当

      时,直线

      与圆

      相离; (2)当

      时,直线

      与圆

      相切; (3)当

      时,直线

      与圆

      相交;

      4.2.2 圆与圆的位置关系

      两圆的位置关系.

      设两圆的连心线长为

      ,则判别圆与圆的位置关系的依据有以下几点: (1)当

      时,圆

      与圆

      相离; (2)当

      时,圆

      与圆

      外切; (3)当

      时,圆

      与圆

      相交; (4)当

      时,圆

      与圆

      内切; (5)当

      时,圆

      与圆

      内含;

      4.2.3 直线与圆的方程的应用

      1、利用平面直角坐标系解决直线与圆的位置关系;

      2、过程与方法

      用坐标法解决几何问题的步骤:

      第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

      第二步:通过代数运算,解决代数问题;

      第三步:将代数运算结果“翻译”成几何结论.

      4.3.1空间直角坐标系

      1、点M对应着唯一确定的有序实数组

      ,

      、

      、

      分别是P、Q、R在

      、

      、

      轴上的坐标 2、有序实数组

      ,对应着空间直角坐标系中的一点 3、空间中任意点M的坐标都可以用有序实数组

      来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M

      ,

      叫做点M的横坐标,

      叫做点M的纵坐标,

      叫做点M的竖坐标。

      4.3.2空间两点间的距离公式

      1、空间中任意一点

      到点

      之间的距离公式

    关于高中数学必修二教案的问题,通过《高中数学必修二的知识点总结》、《高二数学知识点大全必修二》等文章的解答希望已经帮助到您了!如您想了解更多关于高中数学必修二教案的相关信息,请到本站进行查找!

    相关阅读

    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网