返回目录:范文示例
今天小编给各位分享丰富的图形世界的知识,文中也会对其通过七年级上册知识点汇总和七年级上册数学重要知识点总结等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、七年级上册知识点汇总
第一章:丰富的图形世界一、生活中的立体图形分类
1.棱柱的相关概念(初中只讨论直棱柱,即侧面是长方形)
①棱:在棱柱中,相邻两个面的交线叫做棱
②侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱
③根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱......
④棱柱所有侧棱都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形
2.n棱柱的面、顶点、棱、侧棱、侧面数量关系
面
顶点
棱
侧棱
侧面
三棱柱
5
6
9
3
3
四棱柱
6
8
12
4
4
五棱柱
7
10
15
5
5
n棱柱
n+2
2n
3n
n
n
3.点、线、面、体
①点:线和线相交的地方是点,它是几何中最基本的图形
②线:面和面相交的地方是线,分为直线和曲线
③面:包围着体的是面,分为平面和曲面
④体:几何体也简称体
⑤点动成线,线动成面,面动成体
二、展开与折叠
1.常见立体图形的展开图
①圆柱:两个圆,一个长方形
②圆锥:一个圆,一个扇形
③三棱锥:四个三角形
④三棱柱:两个三角形,三个长方形
⑤正方体展开图:共有11种.“141(6种)”,“231(3种)”,“33(1种)”,“222(1种)” (口诀:一线不过四,田凹应弃之)
⑥要展开一个正方体,需要切开7条棱
⑦正方体平面展开图找对立面:相间、Z端
三、截一个几何体
1.常见立体图形的截面
2.用一个平面去截一个正方体,可能得到三边形、四边形、五边形、六边形(3456)
四、三视图(主视图、左视图、俯视图)
1.三视图的6种题型:
(1)已知实物图画三视图;
(2)已知俯视图,画主视图和左视图;
(3)已知主视图、左视图和俯视图,确定小立方体的个数;
(4)已知主视图和俯视图,确定小立方体最多和最少个数;
(5)已知左视图和俯视图,确定小立方体最多和最少个数;
(6)已知主视图和左视图,确定小立方体最多和最少个数。
五、多边形的一些规律
1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.从一个n边形的一边上的一点出发,分别连接这个点与其余各顶点,可以把这个n边形分割成(n-1)个三角形。
3.从一个n边形的内部的一个点出发,分别连接这顶点与其余各顶点,可以把这个n边形分割成n个三角形。
4.从一个n边形一个顶点出发,可引( n-3)条对角线,n边形共有
条对角线。
5.数学家欧拉发现:若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2
第二章:有理数及其运算一、有理数
1.分类
注意:有限小数和无限循环小数都是分数,都是有理数
2.正负数:表示相反意义的量
3.相反数
①只有符号不同的两个数叫做互为相反数,0的相反数是0
②在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的距离相等
③互为相反数的两个数的和是0。即a+(-a)=0
4.数轴:规定了原点、正方向和单位长度的直线叫做数轴
①数轴三要素:原点、正方向、单位长度
②任何一个有理数都可以用数轴上的点表示。(反过来说不对)
③在同一数轴上,右边的数总比左边的数大。(左小右大)
5.倒数
①乘积为1的两个有理数互为倒数(乘积为-1的两个有理数互为负倒数)
②如果a与b互为倒数,则有ab=1,反之亦成立
③倒数等于本身的数是1和-1。0没有倒数
6.绝对值
①在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,记作
②任何数的绝对值总是非负数,即
>0
③正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
7.有理数比较大小
①正数>0>负数
②正数和正数比较大小,绝对值大的就大
③负数和负数比较大小,绝对值大的反而小
二、有理数的运算
1.运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的
2.运算律
①加法交换律:a+b=b+a
②加法结合律:(a+b)+c=a+(b+c)
③乘法交换律:ab=ba
④乘法结合律:(ab)c=a(bc)
⑤乘法对加法的分配律:a(b+c)=ab+bc
3.有理数的加法法则
①同号两数相加,取相同的符号,并把绝对值相加
②异号两数相加,取绝对值较大数的符号,并用较大数的绝对值减去较小数的绝对值
③一个数同0相加,仍得这个数
4.有理数的减法法则
①减去一个数,等于加上这个数的相反数
5.有理数的乘法法则
①两数相乘,同号得正,异号得负,并把绝对值相乘
②任何数与0相乘,积仍为0
③几个不为0的因数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正;当负因数的个数是奇数时,积为负。
6.有理数的除法法则
①两数相除,同号得正,异号得负,并把绝对值相除
②0除以任何非0数都得0,0不可作为除数,否则无意义
③除以一个数,等于乘以这个数的倒数
7.有理数的乘方
①几个相同因数积的运算叫做乘方
②一个数可以看作是本身的一次方
③当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数
④乘方的运算性质
⑴正数的任何次幂都是正数
⑵负数的奇数次幂是负数,偶数次幂是正数
⑶任何数的偶数次幂都是非负数,即
⑷1的任何次幂都得1,0的任何次幂都得0
⑸-1的偶次幂得1,-1的奇次幂得-1
⑹在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值
8.科学记数法
第三章:整式及其加减一、字母表示数(字母可以表示任何数)
二、代数式
1.代数式的概念
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的 字母连接而成的 式子叫做代数式。单独的 一个数或一个字母也是代数式。
2.注意
①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
3.代数式的书写格式
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的 写法来写,如4÷(a-4)应写作
;注意:分数线具有“÷”号和括号的 双重作用。
⑥在表示和(或)差的 代差的 代数式后有单位名称的 ,则必须把代数式括起来,再将单位名称写在式子的 后面,如
平方米
三、整式
1.单项式
①定义:数与字母的乘积的形式的代数式叫做单项式,单独的一个数和一个字母也是单项式
②系数:单项式的数字因数叫做单项式的系数
③次数:单项式种所有字母的指数和叫做单项式的次数
2.多项式
①定义:几个单项式的和叫做多项式
②项:组成多项式的每个单项式叫做多项式的项,不含字母的项叫做常数项
③次数:多项式中,次数最高的项的次数,叫做多项式的次数
3.同类项
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项
②两个相同,两个无关
③合并同类项,把同类项合并成一项叫做合并同类项,系数相加,字母和字母的指数不变
4.去括号法则
①括号前面是+,去掉括号和前面的+号后,原括号里各项的符号都不改变
②括号前面是-,去掉括号和前面的-号后,原括号里各项的符号都改变
5.整式的加减
①一般步骤:先去括号,再合并同类项
第四章:基本平面图形一、直线、射线、线段
1. 正确理解直线、射线、线段的 概念以及它们的 区别:
名称
图形
表示方法
端点
长度
直线
直线AB(或BA)
直线l
无端点
无法度量
射线
射线OM
1个
无法度量
线段
线段AB(或BA)
线段l
2个
可度量长度
2.直线公理:经过两点有且只有一条直线(两点确定一条直线)
3.字母表示图形
①一个点可以用一个大写字母表示
②一条直线可以用一个小写字母或用直线上两个点的大写字母表示
③一条射线可以用端点和射线上另一点来表示(端点字母写在前面)
④一条线段可以用一个小写字母或用它的端点的两个大写字母来表示
4.点和直线的关系
①点在直线上,或者说直线经过这个点
②点在直线外,或者说直线不经过这个点
5.线段的性质
①线段公理:两点之间,线段最短
②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离
③线段的中点到两端点的距离相等
④线段的大小关系和它们的长度的大小关系式一致的
二、角
1.有公共端点的两条射线组成的图形叫做角,两条设想的公共端点叫做这个角的顶点
2.角也可以看成是一条射线绕着它的端点旋转而成的
3.角的表示
4.角的度量(1°=60’ 1’=60”)
5.角的平分线
三、多边形
1.由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形
四、圆
五、弧(圆上任意两点A、B间的部分叫做圆弧,简称弧)
六、扇形(由一条弧AB和经过这条弧的端点的两条半径所组成的图形叫做扇形)
第五章:一元一次方程一、方程(含有未知数的等式叫做方程)
1.方程的解:能使方程左右两边相等的未知数的值叫做方程的解
2.一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程
3.等式的基本性质
①等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。
②等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
4.移项
①把方程的一项从一边移动到另一边,叫做移项。
②移项的过程要更改符号
5.解一元一次方程的一般步骤
①去分母
②去括号
③移项
④合并同类项
⑤将未知数的系数化为1
6.用一元一次方程解决实际问题
①找出等量关系式
②设未知数
③列方程
④解方程
⑤检验
第六章:数据的收集与整理一、数据的收集
1.数据收集的方法
①直接方法:观察、测量、调查、实验灯
②间接方法:互联网查询、查阅文献资料等
二、普查和抽样调查
1.普查(为一特定目的而对所有考察对象所做的全面调查)
①总体:所考察的对象的全体
②个体:组成总体的每一个考察对象
2.抽样调查(为一特定目的而对部分考察对象所做的调查)
①样本:从总体中所抽取的一部分个体。只有抽样调查里,才有样本
②样本容量:从总体中抽取的个体的数量
③为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到
④总体中的每一个个体都有相等机会被抽到,这样的抽样方法是一种简单随机抽样
⑤抽样调查要注意:1.样本容量不能太少(广泛性);2.样本应具有代表性
3.普查和抽查的优缺点
三、数据的表示
1.扇形统计图
2.条形统计图
①频数直方图
3.折线统计图
4.统计图的选择
①条形统计图能清楚的表示出每个项目的具体个数
②折线统计图能清楚的反映出事物的变化情况
③扇形统计图能清楚的表示出各部分在总体中所占的百分比
一、七年级上册数学重要知识点总结
学好数学最重要的就是整理好知识点,下面我就大家整理一下七年级上册数学重要知识点总结,仅供参考。
负有理数 分数
2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:
(1)五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
整式及其加减
1、代数式
用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数,如应写作;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。
2、整式:单项式和多项式统称为整式。
①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。
②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
以上就是我为大家整理的七年级上册数学重要知识点总结 。
二、七年级数学上册知识点总结
七年级数学上册知识点总结(通用8篇)总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以促使我们思考,为此要我们写一份总结。那么如何把总结写出新花样呢?下面是小编为大家整理的七年级数学上册知识点总结(通用8篇),欢迎大家分享。
七年级数学上册知识点总结 篇1
数轴
1、数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:(1)数轴是一条向两端无限延伸的直线;(2)原点、正方向、单位长度是数轴的三要素,三者缺一不
可;(3)同一数轴上的单位长度要统一;(4)数轴的三要素都是根据实际需要规定的。
2、数轴上的点与有理数的关系
(1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
(2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3、利用数轴表示两数大小
(1)在数轴上数的大小比较,右边的数总比左边的数大;
(2)正数都大于0,负数都小于0,正数大于负数;
(3)两个负数比较,距离原点远的数比距离原点近的数小。
4、数轴上特殊的(小)数
(1)最小的自然数是0,无的自然数;
(2)最小的正整数是1,无的正整数;
(3)的负整数是-1,无最小的负整数
5、a可以表示什么数
(1)a>0表示a是正数;反之,a是正数,则a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,则a=0
七年级数学上册知识点总结 篇2
第一章 有理数
(一)正负数
1、正数:大于0的数。
2、负数:小于0的数。
3、0即不是正数也不是负数。
4、正数大于0,负数小于0,正数大于负数。
(二)有理数
1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2、整数:正整数、0、负整数,统称整数。
3、分数:正分数、负分数。
(三)数轴
1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2、数轴的三要素:原点、正方向、单位长度。
3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法
1、先定符号,再算绝对值。
2、加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4、加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5、 ab = a +(b) 减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2、乘积是1的两个数互为倒数。
3、乘法交换律:ab= ba
4、乘法结合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理数除法
1、先将除法化成乘法,然后定符号,最后求结果。
2、除以一个不等于0的数,等于乘这个数的倒数。
3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
(八)有理数的加减乘除混合运算法则
1、先乘方,再乘除,最后加减。
2、同级运算,从左到右进行。
3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章 整式
(一)整式
1、整式:单项式和多项式的统称叫整式。
2、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3、系数:一个单项式中,数字因数叫做这个单项式的系数。
4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5、多项式:几个单项式的和叫做多项式。
6、项:组成多项式的每个单项式叫做多项式的项。
7、常数项:不含字母的项叫做常数项。
8、多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。
9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。
1、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
第三章 一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
2、解:求出的方程中未知数的值叫做方程的解。
(二)等式的性质
1、等式两边加(或减)同一个数(或式子),结果仍相等。
如果a= b,那么a± c= b± c
2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c0),那么a ?Mc = b ?M c。
(三)解方程的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。
1、去分母:把系数化成整数。
2、去括号
3、移项:把等式一边的某项变号后移到另一边。
4、合并同类项
5、系数化为1
第四章 图形认识初步
一、图形认识初步
1、几何图形:把从实物中抽象出来的各种图形的统称。
2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、点,线,面,体
1图形是由点,线,面构成的。
2线与线相交得点,面与面相交得线。
3点动成线,线动成面,面动成体。
二、直线、线段、射线
1、线段:线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。
3、直线:将线段的两端无限延长就形成了直线。直线没有端点。
4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5、相交:两条直线有一个公共点时,称这两条直线相交。
6、两条直线相交有一个公共点,这个公共点叫交点。
7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8、线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)
9、距离:连接两点间的线段的长度,叫做这两点的距离。
三、角
1、角:有公共端点的两条射线组成的图形叫做角。
2、角的度量单位:度、分、秒。
3、角的度量与表示:
1角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。
4、角的比较:
1角也可以看成是由一条射线绕着他的端点旋转而成的。
2平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
3平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
4工具:量角器、三角尺、经纬仪。
5、余角和补角
1余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。
2补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。
3补角的性质:等角的补角相等。
4余角的性质:等角的余角相等。
七年级数学上册知识点总结 篇3
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若1分母中不含有字母,2式子中含有加、减运算关系,也不是单项式、
单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)
单项数的次数:是指单项式中所有字母的指数的和、(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式、特别注意多项式的项包括它前面的性质符号、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
三、语文七年级上册知识点
在平日的学习中,看到知识点,都是先收藏再说吧!知识点是指某个模块知识的重点、核心内容、关键部分。你知道哪些知识点是真正对我们有帮助的吗?以下是我为大家整理的人教版语文七年级上册知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、重点字词
1.给下列加点字注音。
分歧qí蹲dūn下
2.解释下列词语。
(1)委屈:受到不应有的指责或待遇,心里难过。
(2)粼粼:形容水的明净。
(3)各得其所:每个人或每种事物都得到适当的安置。
二、重点句子背记知识清单
到了一处,我蹲下来,背起了母亲,妻子也蹲下来,背起了儿子。我的母亲虽然高大,然而很瘦,自然不算重,儿子虽然很胖,毕竟幼小,自然也轻。俱我和妻子都是慢慢地,稳稳地,走得很仔细,好像我背上的同她背上的加起来,就是整个世界。
三、文学(文体)常识背记知识清单
1.给下列加点字注音。
tān huàn shì yǎng ju? bi? qiáo cuì fáng shàn wān d?u
瘫痪侍养诀别憔悴仿膳豌豆..
二、问题:
1.课文主要写了什么?
课文讲述了重病缠身的母亲,体贴入微地照顾双腿瘫痪的儿子,鼓励儿子要好好活下去的故事,歌颂了伟大而无私的母爱.
课文写了四件事:
(1) 1当“我”发脾气时,母亲对我的抚慰.
(2)母亲重病缠身,却不告诉儿子,不想给儿子增添痛苦.
(3)母亲央求“我”去看花
(4)母亲的临终嘱托
2.“我”的双腿瘫痪之后,母亲的侍弄的花为什么都死了?
答:因为“我”的原因,母亲已精疲力竭,无力再照顾花了。
3.文中写到“我”坐在窗前看落叶,“母亲进来了,挡在窗前”。你怎样理解母亲挡住落叶的行为?
.答:因为母亲希望“我”的心情好一点,也有助于病情。
4.为什么“我”答应去看花,母亲竟高兴得坐立不安?为什么“我”责备她“烦不烦”,她却笑了?这说明什么?
答:因为母亲看到了“希望”,这是“我”第一次答应母亲带“我”去玩。
5.前面母亲说“好好儿活”和最后“我”说“要好好儿活”各有什么含意?这样写在文章结构上有什么作用?
答:因为母亲知道自己命不久矣,从而想让“我”以后照顾自己。后文写“要好好儿活”是“我”知道了母亲的良苦用心,决定好好照顾自己。在文章结构上起“前后呼应”的效果。
人教版语文七年级学习方法
(1)了解。看课文、看注释、看课后的“思考与练习”,看单元知识和训练,了解了这些信息后,对单篇课文和整个单元就有了一个初步的印象和全面的了解。
(2)查相关的背景知识和扫除文字障碍。
(3)独立思考。重要的是根据提示、文章、练习题进行思考。如提示的内容是否真懂了,文章主题的概括、层次的划分、段意的归纳、句子的理解、写作特色的分析等问题能否解决,课后习题能否回答。那些基础知识扎实、自学习惯好、自学能力强、有钻研精神的同学,在“思考”方面要适当地自我要求高一些。
(4)批注。就是在不懂的地方标上符号。如不懂之处用“?”,重点之处用“※”,课前自学批的字,最好用铅笔,听课后批的字可用钢笔写,以免时间一久,将自己的.见解和老师的观点搞混了。
(5)质疑。就是对文章的见解、修辞手法、表达方法等提出疑问,这是成为一个批判型学习者的第一步,学生只有成为一个批判型学习者,才能起到事半功倍的学习效果。例如在《三国演义》、《水浒传》等古典小说中有许多将对将的单独拼杀,同学们就应该想一想这可能吗?如果不可能,作者又为什么这么写?
(6)记录。就是做好读书笔记。
人教版语文七年级学习技巧
1、注重日常积累:语文考验的是自己肚中的墨水,若是自己没有一定知识累积的话,语文成绩自然不高。所以想要提升语文成绩,平时更应该注重诗词好句的积累。
2、学会理解文章:通过理清文章的结构层次,明确课文的内在逻辑,把结构层级作为记忆线索,形成知识网络,更能方便记忆。
3、学会观察周围:写作是源于生活的,最打动人的往往是细节之处。所以平时要多观察生活,写作时多做细节描写,才能真正为作文进行润色,让老师能眼前一亮。
关于丰富的图形世界的问题,通过《七年级数学上册知识点总结》、《语文七年级上册知识点》等文章的解答希望已经帮助到您了!如您想了解更多关于丰富的图形世界的相关信息,请到本站进行查找!