作者:158文章网日期:
返回目录:范文示例
今天小编给各位分享抛物线的几何性质的知识,文中也会对其通过抛物线的几何意义和抛物线的方程中P的几何意义是什么?等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、抛物线的几何意义
抛物线的几何意义
一、抛物线的方程中P的几何意义是什么?
抛物线方程中y2=2px(p>0),则 p/2 为焦点或准线到原点的距离,即焦点(p/2,0) 准线x=p/2另焦点与准线的位置由方程决定:焦点与准线处于一次项的坐标轴上(如上述方程中的y为二次项,x为一次项,焦点与准线就在x轴上)。而p>0时,焦点在正半轴,准线在负半轴,反之亦然。
二、什么是抛物线
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法[1]。在几何平面上可以根据抛物线的方程画出抛物线。抛物线在合适的坐标变换下,也可看成二次函数图像。中文名
抛物线方程
外文名
parabolic equation
应用学科
数学
适用领域范围
数学、物理、建筑学等
解释
指抛物线的轨迹方程
定义
抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0
方程
抛物线的标准方程有四种形式,参数p的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中P(x0,y0)为抛物线上任一点[3] 。
标准方程
y^2=2px(p>0)
y^2=-2px(p>0)
x^2=2py(p>0)
x^2=-2py(p>0)
图形
范围
x≥0,y R
x≤0,y R
y≥0,x R
y≤0,x R
展开全部
对于抛物线y^2=2px(p≠0)上的点的坐标可设为( ,y0),以简化运算。
抛物线的焦点弦:设过抛物线y^2=2px(p>0)的焦点F的直线与抛物线交于A(x1,y1)、B(x2,y2),直线OA与OB的斜率分别为k1,k2,直线l的倾斜角为α,则有y1y2=-p^2,x1x2= ,k1k2=-4,|OA|= ,|OB|= ,|AB|=x1+x2+p。
几何性质
方程的具体表达式为y=ax^2+bx+c
⑴a 0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点(顶点):( , );
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
( ,0)和( ,0);
Δ=0,图象与x轴交于一点:
( ,0);
Δ<0,图象与x轴无交点;
(5)对称轴(顶点)在y 轴 左侧时 , a ,b 同号 ,对称轴 (顶点 ) 在 y 轴右侧时,a 、b 异号;对称轴(顶点)在y轴上时, b=0,抛物线的顶点在原点时, b=c=0。
(6)当x=0时,可通过与y轴交点判断c值,即若抛物线交y轴为正半轴,则c>0;若抛物线交y轴为负半轴,则c<0[4] 。
三、抛物线方程里的P是代表的什么?2又代表的什么?
抛物线方程y^2=2px(p>0)里的p表示焦点到准线的距离。2是常数。抛物线中的p叫做焦准距,是圆锥曲线的几个基本参量之百一,意义为焦点到对应准线的距离,符号度为p。
一、抛物线的标准方程与几何性质
二、抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,p/2等于焦点到抛物线顶点的距离,记牢对解题非常有帮助。
用抛物线定义解决问题,体现了等价转换思想的应用。
由y2=mx(m≠0)或x2=my(m≠0)求焦点坐标时,只需将x或y的系数除以4,再确定焦点位置即可。
涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解。
典型例题1:
三、求抛物线的方程一般是利用待定系数法,即求p但要注意判断标准方程的形式。
研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用。
关于抛物线的几何性质的问题,通过《什么是抛物线》、《抛物线方程里的P是代表的什么?2又代表的什么?》等文章的解答希望已经帮助到您了!如您想了解更多关于抛物线的几何性质的相关信息,请到本站进行查找!
本文标签:抛物线的几何性质(6)