返回目录:范文示例
今天小编给各位分享七年级上册数学复习资料的知识,文中也会对其通过初一数学上册,单元知识点解读+例题突破,暑假这样预习太简单了和初一数学单元知识点归纳5篇(精选)等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、初一数学上册,单元知识点解读+例题突破,暑假这样预习太简单了
记得右上角点击关注,防止丢失,每日更新!
七年级数学上册,虽然相较于小学数学难度增加了不少,但是考试考查的重点仍然以基础知识为主。很多学生平常学习并不是很重视基础知识,比如书本上的概念、性质、定理等。这些知识是考试的重点,但是很多学生对这些内容的理解仅仅是局限在文字表面,而考试需要深入理解才能答对题。
今天,我会针对七年级数学上册,分享单元知识点解读以及知识点的例题训练——整式的加减,希望对你的学习有所帮助。
(完整电子版,文末查看获取)
一、初一数学单元知识点归纳5篇(精选)
每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初一数学第一单元知识点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
2数学常用计算公式表(1)长方形面积=长×宽,计算公式s=a b
(2)正方形面积=边长×边长,计算公式s=a × a
(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2
(4)正方形周长=边长× 4,计算公式s= 4a i
(5)平形四边形面积=底×高,计算公式s=a h.
(6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=a bh
(9)圆的面积=圆周率×半径平方,计算公式s=лr2
(10)正方体体积=棱长×棱长×棱长,计算公式v=a3
初一下册数学知识点 总结
1.1正数与负数
在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
1.2有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
初中 一年级数学 上册知识
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
初一数学上册知识点归纳
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“? ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“? ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;
(5)在代数式中出现除法运算时,一般用 分数线 将被除式和除式联系,如3÷a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
初一数学 复习方法
考试与作业逻辑不同:
我们的考试不同于作业,有些孩子作业写的还可以,准确率挺高的,但是考试成绩不理想。比如学校上完课,回家就写当天的作业,但是考试不一样,它是阶段性的、综合性的;再比如写作业,可以看资料,不会的可以请教同学,但是考试就得靠自己;还有写作业时格式不一定规范,不一定符合标准,但是考试老师会要求很严格;另外有些孩子考试比较焦虑,考试之前,爸爸妈妈给孩子加油鼓劲,反倒孩子考不好,有些孩子甚至在考试前后一定要上厕所,排解压力,甚至影响到考试成绩。
那具体涉及到数学的复习,我以北师大版为例,可以分4个步骤:
复习方法总结
1回归书本,梳理章节概念公式、性质定理等
就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。
比如知识点填空:
知识点填空
我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。
比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。
再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。
还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。
2题型突破,对各章节常见的 热点 问题归纳练习。
我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。
大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。
3、熟悉套路、模型
平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。
三角形倒角常见模型:8字型、飞镖型、折角型。
三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。
学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。
如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。
4、坚持改错题
把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。
初一数学单元知识点归纳相关 文章 :
★ 初一数学上册知识点归纳
★ 初一数学第一单元知识点归纳
★ 初一上册数学知识点归纳整理
★ 初一数学上册知识点汇总归纳
★ 初一数学知识点小归纳
★ 初中七年级数学知识点归纳整理
★ 初一数学知识点梳理归纳
★ 初一数学的知识点归纳
★ 初一数学知识点归纳
★ 初一数学知识点归纳与学习方法
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();二、七年级数学单元知识点
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。
初一下册数学知识点 总结
相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。
平行线及其判定
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
平移
向左平移a个单位长度,可以得到对应点(x-a,y)
向上平移b个单位长度,可以得到对应点(x,y+b)
向下平移b个单位长度,可以得到对应点(x,y-b)
初一下册数学知识点
多项式除以单项式
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
七年级 数学学习方法 技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:
冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。
七年级数学单元知识点相关 文章 :
★ 初一数学上册知识点归纳
★ 初一数学第一单元知识点归纳
★ 初中七年级数学知识点归纳整理
★ 初一上册数学第一单元知识点
★ 七年级数学知识点整理大全
★ 初一上册数学知识点归纳整理
★ 七年级数学上册知识点汇总
★ 七年级数学知识点归纳
★ 七年级上册数学知识点总结三篇
★ 七年级数学知识点整理
三、初一上册数学第一单元知识归纳
从小学到初一的学习需要一定的过渡,尤其是数学方面,在学习内容和思维习惯方面都有很大的变化,为此,以下是我分享给大家的初一上册数学第一单元知识点,希望可以帮到你!初一上册数学第一单元知识点
有理数
知识点一 有理数的分类
有理数的另一种分类(①定义;②符号)
想一想:①零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?
②零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。
知识点二 数轴
1.填空
① 规定了唯一的原点,正方向和单位长度 (三要素)的直线叫做数轴。
② 比-3大的负整数是-2,-1。
③与原点的距离为三个单位的点有2个,他们分别表示的有理数是3,-3。
2.请画一个数轴,并检查它是否具备数轴三要素?
3.选择题
① 在数轴上,原点及原点左边所表示的数是( )
A整数 B负数 C非负数 D非正数
②下列语句中正确的是( )
A数轴上的点只能表示整数
B数轴上的点只能表示分数
C数轴上的点只能表示有理数
D所有有理数都可以用数轴上的点表示出来
知识点三 相反数
相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。
知识点四 绝对值
1.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。
2.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。
3.比较两个数的大小关系
数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数,由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
知识点五 有理数加减法
1.同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
2.互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
知识点六 乘除法法则
1.两数相乘,同号得 正 ,异号得 负 ,并把绝对值 相乘 。 0乘以任何数,都得 0 。
2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为 偶数 时,积为正;负因数的个数为 奇数 时,积为负。
3.两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 。0除以任何一个不等于0的数,都得 0 。
4.有理数中仍然有:乘积是1的两个数互为 倒数 。
5.除以一个不等于0的数等于乘以这个数的 倒数 。
知识点七 乘方
乘方定义:求n个相同因数的积的运算,叫做乘方。
在a的n次方中,底数是a,指数是n,幂是乘方的结果;读作:a的n次方 或a 的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
知识点八 运算律及混合运算
1.加法交换律:a+b=b+a
1.加法交换律:a+b=b+a
2.乘法交换律:a·b=b·a
3.加法结合律:a+(b+c)=(a+b)+c
4.乘法结合律:a·(b·c)=(a·b)·c
5.乘法分配律:a·(b+c)=ab+ac
6.有理数混合运算顺序:先乘方;再乘除;最后算加减。
7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行 。
8.同级运算, 从左到右进行 。
知识点九 近似数
1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。
2.近似数的分类
(1)具体近似数(如30.2、58.0 …)
(2)带单位近似数(如2.4万…)
(3)科学记数法
3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。
4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。
求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。
例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。
初一数学学习方法
1.突出一个“勤”字(克服一个“惰”字)
数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”
“勤能补拙是良训,一分辛劳一分才:
我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字
“聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)
“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”
“手勤”(动手多实践,不仅光做题,做课件,做模型)
这样的人聪明不聪明?
最大的提高学习效率,首先要做到—— 上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识
2.学好初中数学还有两个要点,要狠抓两个要点:
学好数学,一要(动手),二要(动脑)。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么
动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)
同学就是“题不离手”,这两个要点大家要记住。
“动脑又动手,才能最大地发挥大脑的效率”
3.做到“三个一遍”
大家听过“失败是成功之母”听过“重复是学习之母”吗?
培根(18-19世纪英国的哲学家)——“知识就是力量”
“重复是学习之母”
如何重复,我给你们解释一下:
“上课要认真听一遍,动手推一遍,想一遍”
“下课 看 ”
“考试前 ”
4.重视“四个依据”
读好一本教科书——它是教学、中考的主要依据;
记好一本笔记 ——它是教师多年经验的结晶;
做好做净一本习题集——它是使知识拓宽;
记好一本心得笔记,最好每人自己准备一本错题集
初一数学学习建议
1.课前做什么,预习。有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。其实预习非但不浪费时间,而且有很大的益处。首先,预习是对自己自学能力的锻炼。老师不可能教给你全部的知识,很多的知识都是靠自己自学得到的,这就需要我们有良好的自学能力。其次,通过自己预习得到的要比通过上课听老师讲得到的印象要深刻的多。
那该如何预习,预习些什么内容呢?第一,要看课本,看课本上的基本概念和基本例题,对这部分内容要做到理解。因为这就是基础,万变不离其宗,后面的任何变化都离不开这个基础。第二,在理解基本概念的基础上完成课后的随堂练习。因为通过什么来检测你是否理解了概念,只有通过题目。课后的随堂练习的设置就是理解基本概念后的简单的运用。如果预习的过程中有不懂的地方,要在书上做好记号,上课时就要着重听这部分内容;如果内容简单,自己能理解,那上课时就要听老师是如何讲解的,和自己对照一下,看看自己的理解是否正确,或者看看有没有其他的解题思路
2.课上做什么,认真听讲。听课是学习中最重要的环节,是准确的掌握所学知识的关键。课上认真听十分钟胜过课后自己看书三十分钟。那么上课该如何认真听讲,听什么。第一、带着在预习中未懂的问题听课,注意力集中,尽可能把疑点在课中解决。
第二,对于在预习中认为弄懂了的问题,主要听老师的讲解是否和自己的理解一致,纠正自己在预习中对一些知识的片面理解或错误理解。
第三,在预习中没有弄懂的问题,通过老师讲懂了或还有疑问,要在课堂上把关键的地方记下来,课后要及时进行向老师请教,弄懂、弄明白。
第四,在听课中注意不能只听问题的答案,关键是听老师讲解例题的解题思路,明白了解题思路,你是学会了做这一类题,而不是只是一道题。
例题是为巩固数学知识而讲,例题的作用是举一反三。有人做过这样一个实验:
一个老师带着一个初一班,他每周都测验他的学生,而且公开告诉他的学生,考题全部他上课讲的例题。学生开始一片哗然,90%的学生有信心拿满分,只有班上几个最差的学生不敢这么说,很快第一次测验结果出来了,及格率48%,满分率不到8%,第二次情况有所好转,初一时这个班数学成绩与同年级数学特长班平均分相差12.5分。初二时与数学班只差1.5分,比年级平均分高10分。初三毕业,这个班几乎与数学特长班没有区别。
第五,注意听老师在课堂中补充的例题,这些例题通常具有代表性,听老师的解题思路,拓宽自己的知识,要学会自己可以动手解决这一类问题。
猜你喜欢:
1. 7年级数学知识点总结
2. 初一数学重要知识点总结
3. 人教版七年级数学上册复习提纲
4. 七年级数学上册复习提纲
5. 初一上册数学第一单元的思维导图
关于七年级上册数学复习资料的问题,通过《七年级数学单元知识点》、《初一上册数学第一单元知识归纳》等文章的解答希望已经帮助到您了!如您想了解更多关于七年级上册数学复习资料的相关信息,请到本站进行查找!