返回目录:范文示例
今天小编给各位分享高等数学课件的知识,文中也会对其通过借助 68 段动画以可视化方式来学习高等数学,掌握微积分和比较好的高等数学微积分学习方法等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、借助 68 段动画以可视化方式来学习高等数学,掌握微积分
相信很多朋友一听到“微积分”、"高等数学"就头大, 因为高数书中有那么多公式和定理, 好枯燥啊! 其实我们在记忆这些概念之前, 如何能够透彻理解公式背后的意义就非常重要! 那些冷冰冰的数学概念能不能借助下面动画来帮助更快速掌握、学习呢?
之前 [遇见数学] 已经基于风靡美国《普林斯顿微积分读本》一书所制作图解系列文章 (请见链接), 现在又制作了 PPT 格式(适用Office07以上版本)文件(请见链接), 这样大家可以一边学习书中的概念内容, 一边动手操纵相应的模型.
并且今日凌晨小编已经将全部 20 章内容制作完毕. 另外也将共 68 个动画制作成GIF格式一并分享出来. 这样借助完全可视化的动画学习. 请看下面的制作好的动画:请点击此处输入图片描述
小编半年里熬夜制作, 苦咖啡浇灌而成的全部动画就是这么简单、直接地分享给每一位关注支持 [遇见数学] 的朋友!
由于《普林斯顿微积分读本》一书并未覆盖国内高数全部的内容, 未来 [遇见数学] 会继续更新余下高等数学下册内容, 还请大家关注支持! 还请多提宝贵意见! 如果您觉得这些动画多少有点用, 请向身边的朋友们多多推荐, 我们在此感谢感谢! 欢迎关注 [遇见数学]!
限于小编水平和精力有限,错误和疏漏在所难免,由衷欢迎广大老师和朋友们予以批评和指正,以便未来进一步更正和改进.
一、比较好的高等数学微积分学习方法
中国科技大学- 龚升- 微积分五讲(92页)《微积分五讲》从现代数学的观点以及矛盾的观点来重新审视与认识微积分。用通俗的语言讲述了微积分从哪里来、微积分的三个发展阶段、微积分严格化后走向哪里、微积分的主要矛盾,尤其用外微分形式的观点来说清楚高维空间上微积分的主要矛盾,用矛盾的观点来梳理微积分中的定理与公式等,使读者从高一个层次上来认识微积分。 编辑推荐《微积分五讲》适合理工科专业的大学生、研究生、教师以及数学爱好者使用。 全书92页,尤其适合不愿翻大部头的同学使用。
如果想系统学习,那就是南开张筑生的数学分析新讲,绝对详细;堪比当年菲赫金格尔茨的微积分教程。
二、高等数学(一)微积分
什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。
从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。这些都为后来的微积分的诞生作了思想准备。
17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。因而,一切变量都是流量。
牛顿指出,“流数术”基本上包括三类问题。
(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。
(2)已知表示流数之间的关系的方程,求相应的流量间的关系。这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。
(3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。
牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。
牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
莱布尼茨使微积分更加简洁和准确
而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。
莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。
牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
三、高等数学《微积分》该怎么学?
经验一:1.1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间。
1.2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。
1.3、不要整个晚上都复习同一门功课。我以前也曾经常用一个晚上来看数学或物理,实践证明,这样做非但容易疲劳,而且效果也很差。后来我在每晚安排复习两三门功课,情况要好多了。
1.4、除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。
经验二:
2.1、本来,有付出就应该有回报,而且,付出的多就应该回报很多,这是天经地义的事。但实际的情况却并非如此,这里边就存在一个效率的问题。效率指什么呢?好比学一样东西,有人练十次就会了,而有人则需练一百次,这其中就存在一个效率的问题。
2.2、如何提高学习效率呢?学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。
2.3、那么上课时的听课效率如何提高呢?
以我的经历来看,课前要有一定的预习,这是必要的,不过我的预习比较粗略,无非是走马观花地看一下课本,这样课本上讲的内容、重点大致在心里有个谱了,听起课来就比较有针对性。预习时,我们不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的,但就象我以前一个老师讲的,任何人也无法集中精力一节课,就是说,连续四十多分钟集中精神不走神,是不太可能的,所以上课期间也有一个时间分配的问题,老师讲有些很熟悉的东西时,可以适当地放松一下。
2.4、作题的效率如何提高呢?
最重要的是选"好题",千万不能见题就作,不分青红皂白,那样的话往往会事倍功半。题都是围绕着知识点进行的,而且很多题是相当类似的,首先选择想要得到强化的知识点,然后围绕这个知识点来选择题目,题并不需要多,类似的题只要一个就足够,选好题后就可以认真地去做了。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。
经验三:
3.1、第一点,要自信。学习的过程,应当是用脑思考的过程,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,真正的关键还在于用脑子去想。举一个很浅显的例子,比如说记单词,如果你只是随意的浏览或漫无目的地抄写,也许要很多遍才能记住,而且不容易记牢,而如果你能充分发挥自己的想象力,运用联想的方法去记忆,往往可以记得很快,而且不容易遗忘。现在很多书上介绍的英语单词快速记忆的方法,也都是强调用脑筋联想的作用。可见,如果能做到集中精力,发挥脑的潜力,一定可以大大提高学习的效果。
3.2、第二点, 另一个影响到学习效率的重要因素是人的情绪。我想,每个人都曾经有过这样的体会,如果某一天,自己的精神饱满而且情绪高涨,那样在学习一样东西时就会感到很轻松,学的也很快,其实这正是我们的学习效率高的时候。因此,保持自我情绪的良好是十分重要的。我们在日常生活中,应当有较为开朗的心境,不要过多地去想那些不顺心的事,而且我们要以一种热情向上的乐观生活态度去对待周围的人和事,因为这样无论对别人还是对自己都是很有好处的。
经验四:
提高效率,途径大致有以下几点:
一、每天保证8小时睡眠。 晚上不要熬夜,定时就寝。中午坚持午睡。充足的睡眠、饱满的精神是提高效率的基本要求。
二、学习时要全神贯注。 玩的时候痛快玩,学的时候认真学。一天到晚伏案苦读,不是良策。学习到一定程度就得休息、补充能量。学习之余,一定要注意休息。但学习时,一定要全身心地投入,手脑并用。我学习的时侯常有陶渊明的"虽处闹市,而无车马喧嚣"的境界,只有我的手和脑与课本交流。
三、坚持体育锻炼。 身体是"学习"的本钱。没有一个好的身体,再大的能耐也无法发挥。因而,再繁忙的学习,也不可忽视放松锻炼。有的同学为了学习而忽视锻炼,身体越来越弱,学习越来越感到力不从心。这样怎么能提高学习效率呢?
四、学习要主动。 只有积极主动地学习,才能感受到其中的乐趣,才能对学习越发有兴趣。有了兴趣,效率就会在不知不觉中得到提高。有的同学基础不好,学习过程中老是有不懂的问题,又羞于向人请教,结果是郁郁寡欢,心不在焉,从何谈起提高学习效率。这时,唯一的方法是,向人请教,不懂的地方一定要弄懂,一点一滴地积累,才能进步。如此,才能逐步地提高效率。
五、保持愉快的心情,和同学融洽相处。 每天有个好心情,做事干净利落,学习积极投入,效率自然高。另一方面,把个人和集体结合起来,和同学保持互助关系,团结进取,也能提高学习效率。
六、注意整理。 学习过程中,把各科课本、作业和资料有规律地放在一起。待用时,一看便知在哪。而有的学生查阅某本书时,东找西翻,不见踪影。时间就在忙碌而焦急的寻找中逝去。我认为,没有条理的学生不会学得很好。
关于高等数学课件的问题,通过《高等数学(一)微积分》、《高等数学《微积分》该怎么学?》等文章的解答希望已经帮助到您了!如您想了解更多关于高等数学课件的相关信息,请到本站进行查找!