158文章网欢迎您
您的位置:158文章网 > 范文示例 > 高中数学必修一知识点汇总,涵盖所有重点内容,赶快收藏!

高中数学必修一知识点汇总,涵盖所有重点内容,赶快收藏!

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享高中数学必修一复习的知识,文中也会对其通过高中数学必修一知识点汇总,涵盖所有重点内容,赶快收藏!和高中数学必修1知识点总结等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 高中数学必修一知识点汇总,涵盖所有重点内容,赶快收藏!
  • 高中数学必修1知识点总结
  • 高一数学必修一知识点梳理
  • 谁有高中数学必修一的全部知识点整理,一定要全.简洁
  • 一、高中数学必修一知识点汇总,涵盖所有重点内容,赶快收藏!

    今天,小数老师为大家整理了必修一所有知识点,赶快来看!!

    一、高中数学必修1知识点总结

    高中高一数学必修1各章知识点总结
    第一章 集合与函数概念
    一、集合有关概念
    1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
    2、集合的中元素的三个特性:
    1.元素的确定性; 2.元素的互异性; 3.元素的无序性
    说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
    (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
    (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
    (4)集合元素的三个特性使集合本身具有了确定性和整体性.
    3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    2.集合的表示方法:列举法与描述法.
    注意啊:常用数集及其记法:
    非负整数集(即自然数集)记作:N
    正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
    关于“属于”的概念
    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A
    列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
    描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
    ①语言描述法:例:{不是直角三角形的三角形}
    ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
    4、集合的分类:
    1.有限集 含有有限个元素的集合
    2.无限集 含有无限个元素的集合
    3.空集 不含任何元素的集合 例:{x|x2=-5}
    二、集合间的基本关系
    1.“包含”关系—子集
    注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
    反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
    2.“相等”关系(5≥5,且5≤5,则5=5)
    实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
    ① 任何一个集合是它本身的子集.AíA
    ②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)
    ③如果 AíB, BíC ,那么 AíC
    ④ 如果AíB 同时 BíA 那么A=B
    3. 不含任何元素的集合叫做空集,记为Φ
    规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
    三、集合的运算
    1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
    记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
    2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
    3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
    A∪φ= A ,A∪B = B∪A.
    4、全集与补集
    (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
    记作: CSA 即 CSA ={x | x?S且 x?A}
    S

    CsA

    A

    (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.
    (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

    二、函数的有关概念
    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
    注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.
    定义域补充
    能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.
    (又注意:求出不等式组的解集即为函数的定义域.)
    构成函数的三要素:定义域、对应关系和值域
    再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
    (见课本21页相关例2)
    值域补充
    (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.
    3. 函数图象知识归纳
    (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.
    C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }
    图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.
    (2) 画法
    A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.
    B、图象变换法(请参考必修4三角函数)
    常用变换方法有三种,即平移变换、伸缩变换和对称变换
    (3)作用:
    1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路.提高解题的速度.
    发现解题中的错误.
    4.快去了解区间的概念
    (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
    5.什么叫做映射
    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f:A B”
    给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
    说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象.
    常用的函数表示法及各自的优点:
    1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.
    注意啊:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值
    补充一:分段函数 (参见课本P24-25)
    在定义域的不同部分上有不同的解析表达式的函数.在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
    补充二:复合函数
    如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数.
    例如: y=2sinX y=2cos(X2+1)
    7.函数单调性
    (1).增函数
    设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

    二、高一数学必修一知识点梳理

    是孩子适应学校,适应老师,适应各种学习环境的时候,简单说就是磨合期。高中知识点那么多,学科压力很大,很多人刚进入高一,还存在着新鲜劲和学习的动力,虽然有些吃力,但是依旧在力挺。下面是我给大家带来的 高一数学 必修一知识点梳理,希望能帮助到你!

    高一数学必修一知识点梳理1

    一、指数函数

    (一)指数与指数幂的运算

    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

    当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

    当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

    注意:当是奇数时,当是偶数时,

    2.分数指数幂

    正数的分数指数幂的意义,规定:

    0的正分数指数幂等于0,0的负分数指数幂没有意义

    指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

    3.实数指数幂的运算性质

    (二)指数函数及其性质

    1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

    注意:指数函数的底数的取值范围,底数不能是负数、零和1.

    2、指数函数的图象和性质

    【第三章:第三章函数的应用】

    1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

    2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

    方程有实数根函数的图象与轴有交点函数有零点.

    3、函数零点的求法:

    求函数的零点:

    1(代数法)求方程的实数根;

    2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

    4、二次函数的零点:

    二次函数.

    1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

    2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

    3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

    高一数学必修一知识点梳理2

    1、函数零点的定义

    (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

    (2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点

    ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。

    ③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(

    2、函数零点的判定

    (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

    (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定 方法

    ①代数法:函数)(xfy的零点?0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

    (3)零点个数确定

    0)(xfy有2个零点?0)(xf有两个不等实根;0)(xfy有1个零点?0)(xf有两个相等实根;0)(xfy无零点?0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.

    3、二分法

    (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;

    (2)用二分法求方程的近似解的步骤:

    ①确定区间[,]ab,验证()()0fafb,给定精确度e;

    ②求区间(,)ab的中点c;③计算()fc;

    (ⅰ)若()0fc,则c就是函数的零点;

    (ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);

    ④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.

    高一数学必修一知识点梳理3

    (1)直线的倾斜角

    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

    (2)直线的斜率

    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

    当时,;当时,;当时,不存在.

    ②过两点的直线的斜率公式:

    注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

    (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

    (3)直线方程

    ①点斜式:直线斜率k,且过点

    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

    当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

    ②斜截式:,直线斜率为k,直线在y轴上的截距为b

    ③两点式:()直线两点,

    ④截矩式:

    其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

    ⑤一般式:(A,B不全为0)

    注意:各式的适用范围特殊的方程如:

    平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

    (5)直线系方程:即具有某一共同性质的直线

    (一)平行直线系

    平行于已知直线(是不全为0的常数)的直线系:(C为常数)

    (二)垂直直线系

    垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

    (三)过定点的直线系

    (ⅰ)斜率为k的直线系:,直线过定点;

    (ⅱ)过两条直线,的交点的直线系方程为

    (为参数),其中直线不在直线系中.

    (6)两直线平行与垂直

    注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

    (7)两条直线的交点

    相交

    交点坐标即方程组的一组解.

    方程组无解;方程组有无数解与重合

    (8)两点间距离公式:设是平面直角坐标系中的两个点

    (9)点到直线距离公式:一点到直线的距离

    (10)两平行直线距离公式

    在任一直线上任取一点,再转化为点到直线的距离进行求解.

    高一数学必修一知识点梳理相关 文章 :

    ★ 高一数学必修一知识点汇总

    ★ 高一数学必修1知识点归纳

    ★ 高中数学必修1知识点总结

    ★ 高一数学必修一公式归纳

    ★ 高一数学必修一知识点总结

    ★ 高中数学高一数学必修一知识点

    ★ 高中必修一数学知识点归纳

    ★ 高一人教版数学必修一第一章知识点整理

    ★ 高一数学知识点汇总大全

    ★ 高一数学知识点总结

    三、谁有高中数学必修一的全部知识点整理,一定要全.简洁

    高中数学合集百度网盘下载

    链接:

    ?pwd=1234

    提取码:1234

    简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

    关于高中数学必修一复习的问题,通过《高一数学必修一知识点梳理》、《谁有高中数学必修一的全部知识点整理,一定要全.简洁》等文章的解答希望已经帮助到您了!如您想了解更多关于高中数学必修一复习的相关信息,请到本站进行查找!

    相关阅读

    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网