158文章网欢迎您
您的位置:158文章网 > 范文示例 > 高中数学必修一各章知识点清单,快速提高数学成绩必备干货

高中数学必修一各章知识点清单,快速提高数学成绩必备干货

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享高中数学必修一复习的知识,文中也会对其通过高中数学必修一各章知识点清单,快速提高数学成绩必备干货和高一数学必修知识点梳理等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 高中数学必修一各章知识点清单,快速提高数学成绩必备干货
  • 高一数学必修知识点梳理
  • 高一数学必修一知识点梳理
  • 高中数学必修1知识点
  • 一、高中数学必修一各章知识点清单,快速提高数学成绩必备干货

    (此处已添加圈子卡片,请到今日头条客户端查看)

    注明:整理来源自网络。

    一、高一数学必修知识点梳理

    学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。

    高一数学必修二重要知识点

    两个平面的位置关系:

    (1)两个平面互相平行的定义:空间两平面没有公共点

    (2)两个平面的位置关系:

    两个平面平行-----没有公共点;两个平 面相 交-----有一条公共直线。

    a、平行

    两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

    两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

    b、相交

    二面角

    (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

    (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

    (3)二面角的棱:这一条直线叫做二面角的棱。

    (4)二面角的面:这两个半平面叫做二面角的面。

    (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

    (6)直二面角:平面角是直角的二面角叫做直二面角。

    esp.两平面垂直

    两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

    两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

    两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

    高一数学必修一第一章知识点

    第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

    主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

    第二:平面向量和三角函数。

    重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

    第三:数列。

    数列这个板块,重点考两个方面:一个通项;一个是求和。

    第四:空间向量和立体几何。

    在里面重点考察两个方面:一个是证明;一个是计算。

    高 一年级数学 高效学习方法

    1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。

    2.二次函数,二次方程不仅是初中重点,也是难点。在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了!解不等式的时候就要从先解方程的根开始,二次项系数大于0时,有个口诀得记下:“大于号取两边,小于号取中间”。

    3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。

    4.判别式很重要,不仅能判断二次方程的根有几个,大于零2个根;等于零1个根;小于零无根。而且还能判断二次函数零点的情况,人教版必修一就会学到。集合里面有许多题也要用到。


    高一数学必修知识点梳理相关 文章 :

    ★ 高一数学必修一知识点梳理

    ★ 高一数学必修一知识点汇总

    ★ 高一数学知识点全面总结

    ★ 高一数学必修1各章知识点总结

    ★ 高一数学必修一知识点总结

    ★ 高一数学必修一知识点归纳

    ★ 高一数学必修集合知识点归纳

    ★ 高一数学必修一集合知识点归纳

    ★ 高一数学必修一必记的知识点归纳分析

    ★ 高一数学必修1知识点归纳

    二、高一数学必修一知识点梳理

    是孩子适应学校,适应老师,适应各种学习环境的时候,简单说就是磨合期。高中知识点那么多,学科压力很大,很多人刚进入高一,还存在着新鲜劲和学习的动力,虽然有些吃力,但是依旧在力挺。下面是我给大家带来的 高一数学 必修一知识点梳理,希望能帮助到你!

    高一数学必修一知识点梳理1

    一、指数函数

    (一)指数与指数幂的运算

    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

    当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

    当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

    注意:当是奇数时,当是偶数时,

    2.分数指数幂

    正数的分数指数幂的意义,规定:

    0的正分数指数幂等于0,0的负分数指数幂没有意义

    指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

    3.实数指数幂的运算性质

    (二)指数函数及其性质

    1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

    注意:指数函数的底数的取值范围,底数不能是负数、零和1.

    2、指数函数的图象和性质

    【第三章:第三章函数的应用】

    1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

    2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

    方程有实数根函数的图象与轴有交点函数有零点.

    3、函数零点的求法:

    求函数的零点:

    1(代数法)求方程的实数根;

    2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

    4、二次函数的零点:

    二次函数.

    1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

    2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

    3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

    高一数学必修一知识点梳理2

    1、函数零点的定义

    (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

    (2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点

    ①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。

    ③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(

    2、函数零点的判定

    (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

    (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定 方法

    ①代数法:函数)(xfy的零点?0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

    (3)零点个数确定

    0)(xfy有2个零点?0)(xf有两个不等实根;0)(xfy有1个零点?0)(xf有两个相等实根;0)(xfy无零点?0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.

    3、二分法

    (1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;

    (2)用二分法求方程的近似解的步骤:

    ①确定区间[,]ab,验证()()0fafb,给定精确度e;

    ②求区间(,)ab的中点c;③计算()fc;

    (ⅰ)若()0fc,则c就是函数的零点;

    (ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);

    ④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.

    高一数学必修一知识点梳理3

    (1)直线的倾斜角

    定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

    (2)直线的斜率

    ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

    当时,;当时,;当时,不存在.

    ②过两点的直线的斜率公式:

    注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

    (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

    (3)直线方程

    ①点斜式:直线斜率k,且过点

    注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

    当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

    ②斜截式:,直线斜率为k,直线在y轴上的截距为b

    ③两点式:()直线两点,

    ④截矩式:

    其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

    ⑤一般式:(A,B不全为0)

    注意:各式的适用范围特殊的方程如:

    平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

    (5)直线系方程:即具有某一共同性质的直线

    (一)平行直线系

    平行于已知直线(是不全为0的常数)的直线系:(C为常数)

    (二)垂直直线系

    垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

    (三)过定点的直线系

    (ⅰ)斜率为k的直线系:,直线过定点;

    (ⅱ)过两条直线,的交点的直线系方程为

    (为参数),其中直线不在直线系中.

    (6)两直线平行与垂直

    注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

    (7)两条直线的交点

    相交

    交点坐标即方程组的一组解.

    方程组无解;方程组有无数解与重合

    (8)两点间距离公式:设是平面直角坐标系中的两个点

    (9)点到直线距离公式:一点到直线的距离

    (10)两平行直线距离公式

    在任一直线上任取一点,再转化为点到直线的距离进行求解.

    高一数学必修一知识点梳理相关 文章 :

    ★ 高一数学必修一知识点汇总

    ★ 高一数学必修1知识点归纳

    ★ 高中数学必修1知识点总结

    ★ 高一数学必修一公式归纳

    ★ 高一数学必修一知识点总结

    ★ 高中数学高一数学必修一知识点

    ★ 高中必修一数学知识点归纳

    ★ 高一人教版数学必修一第一章知识点整理

    ★ 高一数学知识点汇总大全

    ★ 高一数学知识点总结

    三、高中数学必修1知识点

    高中高一数学必修1各章知识点总结
    第一章 集合与函数概念
    一、集合有关概念
    1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
    2、集合的中元素的三个特性:
    1.元素的确定性; 2.元素的互异性; 3.元素的无序性
    说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
    (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
    (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
    (4)集合元素的三个特性使集合本身具有了确定性和整体性.
    3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
    1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
    2.集合的表示方法:列举法与描述法.
    注意啊:常用数集及其记法:
    非负整数集(即自然数集)记作:N
    正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
    关于“属于”的概念
    集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A
    列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
    描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
    ①语言描述法:例:{不是直角三角形的三角形}
    ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
    4、集合的分类:
    1.有限集 含有有限个元素的集合
    2.无限集 含有无限个元素的集合
    3.空集 不含任何元素的集合 例:{x|x2=-5}
    二、集合间的基本关系
    1.“包含”关系—子集
    注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
    反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
    2.“相等”关系(5≥5,且5≤5,则5=5)
    实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
    结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
    ① 任何一个集合是它本身的子集.AíA
    ②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)
    ③如果 AíB, BíC ,那么 AíC
    ④ 如果AíB 同时 BíA 那么A=B
    3. 不含任何元素的集合叫做空集,记为Φ
    规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
    三、集合的运算
    1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
    记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
    2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
    3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
    A∪φ= A ,A∪B = B∪A.
    4、全集与补集
    (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
    记作: CSA 即 CSA ={x | x?S且 x?A}
    S

    CsA

    A

    (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.
    (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

    二、函数的有关概念
    1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
    注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.
    定义域补充
    能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.
    (又注意:求出不等式组的解集即为函数的定义域.)
    构成函数的三要素:定义域、对应关系和值域
    再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
    (见课本21页相关例2)
    值域补充
    (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.
    3. 函数图象知识归纳
    (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.
    C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }
    图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.
    (2) 画法
    A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.
    B、图象变换法(请参考必修4三角函数)
    常用变换方法有三种,即平移变换、伸缩变换和对称变换
    (3)作用:
    1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路.提高解题的速度.
    发现解题中的错误.
    4.快去了解区间的概念
    (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
    5.什么叫做映射
    一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f:A B”
    给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
    说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象.
    常用的函数表示法及各自的优点:
    1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.
    注意啊:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值
    补充一:分段函数 (参见课本P24-25)
    在定义域的不同部分上有不同的解析表达式的函数.在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
    补充二:复合函数
    如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数.
    例如: y=2sinX y=2cos(X2+1)
    7.函数单调性
    (1).增函数
    设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

    关于高中数学必修一复习的问题,通过《高一数学必修一知识点梳理》、《高中数学必修1知识点》等文章的解答希望已经帮助到您了!如您想了解更多关于高中数学必修一复习的相关信息,请到本站进行查找!

    相关阅读

    • 高中数学|必修一必背知识点

    • 158文章网范文示例
    • 今天小编给各位分享高中数学必修一复习的知识,文中也会对其通过高中数学|必修一必背知识点和高一数学必背知识点总结等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘
    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网