158文章网欢迎您
您的位置:158文章网 > 范文示例 > 初中数学,9年级求代数式的值,数学中常用的两种基本思想

初中数学,9年级求代数式的值,数学中常用的两种基本思想

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享代数式的值的知识,文中也会对其通过初中数学,9年级求代数式的值,数学中常用的两种基本思想和解答初中数学几何题时有哪些思想方法等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 初中数学,9年级求代数式的值,数学中常用的两种基本思想
  • 解答初中数学几何题时有哪些思想方法
  • 初中数学的思想方法有那些?
  • 常见的数学思想有哪些?
  • 一、初中数学,9年级求代数式的值,数学中常用的两种基本思想

    分析:如果运用求根公式把m和n求解出来,然后带入式子求解,是可以的。但是无疑计算量比较大,且容易算错。处题目的本意肯定也不是如此。

    观察前面两个式子的结构是惊人的相同,这告诉我们什么呢?都是什么的平方-什么=3.我这里用什么就是说这是一个未知的量,一个变量,带入m和n就变成了已知条件的两个式子。

    也就是说这个变量是x,那么:

    这里体现了方程的思想。得到了方程的两个根后有什么用?可能还看不知道,我们再看要求的是什么,n的3次方加上4m。在上面的条件里m和n的关系一直都是对等的,这里n的次数太高了,是3次,m是一次。那我们容易想到将n的次数降下来,即降次。怎么降?

    下面只要求出m+n就行啦!回头来看刚才得到的m和n是方程x^2-x=3的两个根就有用了。

    利用韦达定理,我们知道m+n=-(-1)=1

    所以原式=4(m+n)+2022=4+2022=2026

    本题考查了一元二次方程根的解的概念体现了方程的思想和降次又用到了整体代换的思想

    其中用低次式来表示高次式用于降次,是我们在处理高次代数式时常用的方法,如果一次代换不行,可以重复多次代换。

    一、解答初中数学几何题时有哪些思想方法

    解答初中数学几何题时有哪些思想方法
    分类讨论思想等腰三角形已知两角或两腰底角还是顶角腰还是底函数一般存在X2就有两个解。分式方程无解分母为0化出来的方程无解。 由特殊到一般一般找规律题总结结论题。整体带入 如果一个字母的值无法求出那就把已知的代数式的值代入求解。 一看到图形三角形平行四边形正方形..
    就想它的基本性质旋转。想旋转角对应边对应点到旋转中心的距离相等..一般求解。要有对应线段成比例。一般找相似图形A型图X型图平行就有相似。再两边对应成比例且夹角相等要掌握图形的性质、判定。正确分类。
    一、数形结合思想
    数形结合思想是指看到图形的一些特征可以想到数学式子中相应的反映是看到数学式子的特征就能联想到在图形上相应的几何表现。如教材引入数轴后就为数形结合思想奠定了基础。如有理数的大小比较相反数和绝对位的几何意义列方程解应用题的画图分析等这种抽象与形象的结合能使学生的思维得到训练。
    数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化、生动化能够变抽象思维为形象思维有助于把握数学问题的本质另外由于使用了数形结合的方法很多问题便迎刃而解且解法简捷。
    所谓数形结合就是根据数与形之间的对应关系通过数与形的相互转化来解决数学问题的思想实现数形结合常与以下内容有关1实数与数轴上的点的对应关系2函数与图象的对应关系3曲线与方程的对应关系4以几何元素和几何条件为背景建立起来的概念如复数、三角函数等5所给的等式或代数式的结构含有明显的几何意义。
    如等式 。
    纵观多年来的中考试题巧妙运用数形结合的思想方法解决一些抽象的数学问题可起到事半功倍的效果数形结合的重点是研究“以形助数”。
    例1如图所示比较aabb的大小

    简析在数轴上指出-a-b两个数表示的点四数大小关系就一目了 然。
    例2有一十字路口甲从路口出发向南直行乙从路口以西1500米处向东直行已
    知甲、乙同时出发10分钟后两人第一次距十字路口的距离相等40分钟后两人再次距十字路口距离相等求甲、乙两人的速度。
    简析画出“十字”图分析表示出两人在10分钟、40分钟时的位置由图分析从而列出方程组。
    二、整体变换思想
    整体变换思想是指将复杂的代数式或几何图形中的一部分看作一个整体进行变换使问题简单化。
    例3已知y=ax7+bx5+cx3+dx-1当x=2时y=4则当x=-2时
    y= 。
    简析由已知条件求出27a+25b+23c+2d的值整体代入求出x=-2时
    y的值。
    例4有一个六位数它的个位数学是6如果把6移至第一位前面时
    所得到的六位数是原数的4倍求这个六位数。
    简析设这个六位数的前五位数为x那么这个六位数为10x+8整
    体处理问题就简单化了。
    三、分类讨论思想
    在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合
    求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。
    分类评论的一般步骤是明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。
    分类讨论应遵循的原则分类的对象是确定的,标准是统一的,不遗漏,不重复,分层次,不
    越级讨论。
    当某个问题有多种情况出现或推导结果不唯一确定时常运用分类讨论再加以集中归纳。例如对|a|要去掉绝对值符号应讨论绝对值内部式子的符号要分三种情况去掉绝对值符号。几何中也存在着一些数学和位置关系的分类讨论。
    例5甲、乙两人骑自行车同时从相距75km的两地相向而行甲的速度为15km/n
    乙的速度为10km/n经过多少小时甲、乙两人相距25km
    简析甲、乙两人相遇前后都会相距25km。分两种情况解答。
    例6在同一图形内画出∠AOB=60°∠COB=50°OD是∠AOB的平分线OE是
    ∠COB的平分线并求出∠DOE的度数。
    简析分∠COB在∠AOB的内部和外部两种情形总图。
    四、转化与化归思想
    解决某些数学问题时,如果直接求解较为困难,可通过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将问题转化为一个新问题(相对来说较为熟悉的问题),通过新问题的求解,、达到解决原问题的目的。这一思想方法我们称之为“转化与化归的思想方法”。转化是将数学命题由一种形式向另一种形式的转换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。转化与化归思想是中学数学最基本的思想方法。 转化与化归思想是指根据已有知识、经验通过观察、联想、类比等手段把问题进行变换转化为已经解决或容易解决的问题。如二元一次方程组三元一次方程组的解决实质就是化为解已经学过的一元一次方程。如果把若干个人之间握手总次数单握称为“握手问题”那么像无三点共线的n个点之间连线共端点射线夹角小于平角的角个数一条线段上有若干个点形成的线段的条数足球队之间单个循环比赛场次都可转化为“握手问题”。
    例7用同样长的火柴组成6个大小相同的正方形最少要火柴 根。
    简析这6个大小相同的正方形可看作一个正方体的6个面这样所
    用火柴最少。实际上就是正方体的12条棱。
    例8用同样长的6根火柴棒摆大小相同的三角形最多能摆多少个
    简析同样长的6根火柴棒可以看作正三棱锥的三条棱那么最多能
    摆四个三角形。
    五、逆变换思想
    逆变换思想是指对一些定义、定理、公式法则的逆用和对解题思路的逆向分析。如加减、函数、通分与约分去括号与添括号与均为互逆变换。
    例9计算
    简析逆用乘法分配律。
    例10
    简析逆用幂运算法则。
    例11当a= 时|a|a||=2a
    简析采用逆向分析例12先看绝对值结果根据绝对值的非负性得-2a≥0则a≤0。
    六、函数与方程思想
    函数思想是指变量与变量之间的一种对应思想。方程思想则指把研究数学问题中已知量与未知量之间的数量关系转化成方程或方程组等数学模型。当函数值为零时函数问题就转化为方程问题。同样也可以把方程视为函数值为零时求自变量的问题。
    例12一角的余角的3倍和它的补角的互为补角求这个角的度数。简析几何题中列方
    程组会使问题解决。
    例13某工程队要招聘甲、乙两种工种的工人700人甲、乙两种工
    种的工人的月工资分别为800元和1200元现要求乙种工种的工人数不少于甲种工种人数的3倍问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少
    简析建立函数关系式确定自变量范围利用一次函数单调性增减性解决问题。
    总之在数学教学中切实把握好上述几个典型的数学思想方法同时注重渗透的过程
    依据课本内容和学生的认识水平从初中开始有计划有步骤地渗透使其成为由知识转化为能力的纽带成为提高学生的学习效率和数学能力的法宝。

    二、初中数学的思想方法有那些?

    1、配方法

    所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

    2、因式分解法

    因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

    3、换元法

    换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

    4、判别式法与韦达定理

    一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

    韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

    5、待定系数法

    在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

    6、构造法

    在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

    7、反证法

    反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

    反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。

    归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

    8、面积法

    平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

    用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

    9、几何变换法

    在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

    几何变换包括:(1)平移;(2)旋转;(3)对称。

    10、客观性题的解题方法

    选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

    填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

    要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

    (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

    (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

    (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

    (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

    (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

    (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

    三、常见的数学思想有哪些?

    1、符号化思想

    在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。

    2、分类思想

    以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。

    3、函数思想

    函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。

    它告诉人们一切事物都在不断地变化着,而且相互联系、相互制约,从而了解事物的变化趋势及其运动规律。对于函数,《标准》提出了学生各个学段的要求,结合实验教材,小学中年级的要求是“探索具体问题中的数量关系和变化规律”“通过简单实例,了解常量和变量的意义”。

    4、化归思想

    “化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。

    5、归纳思想

    研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。

    归纳法分为不完全归纳法和完全归纳法两种。小学阶段学生接触较多是不完全归纳法。教学四年级上册运算律(以加法交换律和加法结合律为例),就采用了不完全归纳法展开了教学。

    6、优化思想

    “多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。

    在教学中渗透优化的策略和方法,及时引导学生对各种方法进行评价与反思,通过对各种不同方法的辨析、比较,帮助学生认识不同方法的特点与优势,达到“去伪存真、去粗存精”的目的,培养学生“多中选优,择优而用”的优化意识,构建数学知识,实现对知识的优化和系统化。

    7、数形结合思想

    数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。

    参考资料:

    关于代数式的值的问题,通过《初中数学的思想方法有那些?》、《常见的数学思想有哪些?》等文章的解答希望已经帮助到您了!如您想了解更多关于代数式的值的相关信息,请到本站进行查找!

    本文标签:代数式的值(2)

    相关阅读

    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网