作者:158文章网日期:
返回目录:范文示例
今天小编给各位分享高一数学集合习题的知识,文中也会对其通过高中数学必修一1.3.1不等式的性质习题及答案和豆丁网上的“人教版高一数学必修一各章知识点总结+测试题组全套(含答案)”,发我一份吧907053041@qq.com等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、高中数学必修一1.3.1不等式的性质习题及答案
一、豆丁网上的“人教版高一数学必修一各章知识点总结+测试题组全套(含答案)”,发我一份吧907053041@qq.com
已发。word版的不完整,pdf的是用豆丁下载器下载的,不能修改。刚看到。前两天有事。希望能帮上忙二、有关高中不等式的例题
例4 解答题(2)求不等式10(x+4)+x≤84的非负整数解.
分析:对(1)小题中要明白“不小于”即“大于或等于”,用符号表示即为“≥”;(2)小题非负整数,即指正数或零中的整数,所以此题的不等式的解必须是正整数或零.在求解过程中注意正确运用不等式性质.
解:
∴ 120-8x≥84-3(4x+1)
(2)∵10(x+4)+x≤84
∴10x+40+x≤84
∴11x≤44
∴x≤4
因为不大于4的非负整数有0,1,2,3,4五个,所以不等式10(x+4)+x≤84的非负整数解是4,3,2,1,0.
例5 解关于x的不等式
(1)ax+2≤bx-1 (2)m(m-x)>n(n-x)
分析:解字母系数的不等式与解数字系数不等式的方法、步骤都是类似的,只是在求解过程中常要对字母系数进行讨论,这就增加了题目的难度.此类问题主要考察了对问题的分析、分类的能力:它不但要知道什么时候该进行分类讨论,而且还要求能准确地分出类别来进行讨论(结合例题解法再给与说明).
解:(1)∵ax+2≤bx-1
∴ax-bx≤-1-2
即 (a-b)x≤-3
此时要依x字母系数的不同取值,分别求出不等式的解的形式.
即(n-m)x>n2-m2
当m>n时,n-m<0,∴x<n+m;
当m<n时,n-m>0,∴x>n+m;
当m=n时,n-m=0,n2=m2,n2-m2=0,原不等式无解.这是因为此时无论x取任何值时,不等式两边的值都为零,只能是相等的,所以不等式不成立.
例6 解关于x的不等式
3(a+1)x+3a≥2ax+3.
分析:由于x是未知数,所以把a看作已知数,又由于a可以是任意有理数,所以在应用同解原理时,要区别情况,分别处理.
解:去括号,得
3ax+3x+3a≥2ax+3
移项,得
3ax+3x-2ax≥3-3a
合并同类项,得
(a+3)x≥3-3a
(3)当a+3=0,即a=-3,得0·x≥12
这个不等式无解.
说明:在处理字母系数的不等式时,首先要弄清哪一个字母是未知数,而把其它字母看作已知数,在运用同解原理把未知数的系数化为1时,应作合理的分类,逐一讨论.
例7 m为何值时,关于x的方程3(2x-3m)-2(x+4m)=4(5-x)的解是非正数.
分析:根据题意,应先把m当作已知数解方程,然后根据解的条件列出关于m的不等式,再解这个不等式求出m的值或范围.注意:“非正数”是小于或等于零的数.
解:由已知方程有6x-9m-2x-8m=20-4x
可解得 8x=20+17m
已知方程的解是非正数,所以
例8 若关于x的方程5x-(4k-1)=7x+4k-3的解是:(1)非负数,(2)负数,试确定k的取值范围.
分析:要确定k的范围,应将k作为已知数看待,按解一元一次方程的步骤求得方程的解x(用k的代数式表示之).这时再根据题中已知方程的解是非负数或是负数得到关于k的不等式,求出k的取值范围.这里要强调的是本题不是直接去解不等式,而是依已知条件获得不等式,属于不等式的应用.
解:由已知方程有5x-4k+1=7x+4k-3
可解得 -2x=8k-4
即 x=2(1-2k)
(1)已知方程的解是非负数,所以
(2)已知方程的解是负数,所以
例9 当x在什么范围内取值时,代数式-3x+5的值:
(1)是负数 (2)大于-4
(3)小于-2x+3 (4)不大于4x-9
分析:解题的关键是把“是负数”,“大于”,“小于”,“不大于”等文字语言准确地翻译成数字符号.
解:(1)根据题意,应求不等式
-3x+5<0的解集
解这个不等式,得
(2)根据题意,应求不等式
-3x+5>-4的解集
解这个不等式,得
x<3
所以当x取小于3的值时,-3x+5的值大于-4.
(3)根据题意,应求不等式
-3x+5<-2x+3的解集
-3x+2x<3-5
-x<-2
x>2
所以当x取大于2的值时,-3x+5的值小于-2x+3.
(4)根据题意,应求不等式
-3x+5≤4x-9的解集
-3x-4x≤-9-5
-7x≤-14
x≥2
所以当x取大于或等于2的值时,-3x+5的值不大于4x-9.
例10
分析:
解不等式,求出x的范围.
解:
说明:应用不等式知识解决数学问题时,要弄清题意,分析问题中数量之间的关系,正确地表示出数学式子.如“不超过”即为“小于或等于”,“至少小2”,表示不仅少2,而且还可以少得比2更多.
例11 三个连续正整数的和不大于17,求这三个数.
分析:
解:设三个连续正整数为n-1,n,n+1
根据题意,列不等式,得
n-1+n+n+1≤17
所以有四组:1、2、3;2、3、4;3、4、5;4、5、6.
说明:解此类问题时解集的完整性不容忽视.如不等式x<3的正整数解是1、2,它的非负整数解是0、1、2.
例12 将18.4℃的冷水加入某种电热淋浴器内,现要求热水温度不超过40℃,如果淋浴器每分钟可把水温上升0.9℃,问通电最多多少分钟,水温才适宜?
分析:设通电最多x分钟,水温才适宜.则通电x分钟水温上升了0.9x℃,这时水温是(18.4+0.9x)℃,根据题意,应列出不等式18.4+0.9x≤40,解得,x≤24.
答案:通电最多24分,水温才适宜.
说明:解答此类问题时,对那些不确定的条件一定要充分考虑,并“翻译”成数学式子,以免得出失去实际意义或不全面的结论.
例13 矿山爆破时,为了确保安全,点燃引火线后,人要在爆破前转移到300米以外的安全地区.引火线燃烧的速度是0.8厘米/秒,人离开速度是5米/秒,问引火线至少需要多少厘米?
解:设引火线长为x厘米,
根据题意,列不等式,得
解之得,x≥48(厘米)
答:引火线至少需要48厘米.
*例14 解不等式|2x+1|<4.
解:把2x+1看成一个整体y,由于当-4<y<4时,有|y|<4,即-4<2x+1<4,
巧解一元一次不等式
怎样才能正确而迅速地解一元一次不等式?现结合实例介绍一些技巧,供参考.
1.巧用乘法
例1 解不等式0.25x>10.5.
分析 因为0.25×4=1,所以两边同乘以4要比两边同除以0.25来得简便.
解 两边同乘以4,得x>42.
2.巧用对消法
例2 解不等式
解 原不等式变为
3.巧用分数加减法法则
故 y<-1.
4.逆用分数加减法法则
解 原不等式化为
,
5.巧用分数基本性质
例5 解不等式
约去公因数2后,两边的分母相同;②两个常数项移项合并得整数.
例6 解不等式
分析 由分数基本性质,将分母化为整数和去分母一次到位可避免繁琐的运算.
解 原不等式为
整理,得8x-3-25x+4<12-10x,
思考:例5可这样解吗?请不妨试一试.
6.巧去括号
去括号一般是内到外,即按小、中、大括号的顺序进行,但有时反其道而行之即由外到内去括号往往能另辟捷径.
7.逆用乘法分配律
例8 解不等式
278(x-3)+351(6-2x)-463(3-x)>0.
分析 直接去括号较繁,注意到左边各项均含有因式x-3而逆用分配律可速解此题.
解 原不等式化为
(x-3)(278-351×2+463)>0,
即 39(x-3)>0,故x>3.
8.巧用整体合并
例9 解不等式
3{2x-1-[3(2x-1)+3]}>5.
解 视2x-1为一整体,去大、中括号,得3(2x-1)-9(2x-1)-9>5,整体合并,得-6(2x-1)>14,
9.巧拆项
例10 解不等式
分析 将-3拆为三个负1,再分别与另三项结合可巧解本题.
解 原不等式变形为
得x-1≥0,故x≥1.
练习题
解下列一元一次不等式
③3{3x+2-[2(3x+2)-1]}≥3x+1.
答案
回答者:匿名 7-31 09:24
三、数学必修一答案
高中数学必修1课后习题答案第一章 集合与函数概念
1.1集合
1.1.1集合的含义与表示
练习(第5页)
1.用符号“”或“”填空:
(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,
印度_______A,英国_______A;
(2)若A{x|x2x},则1_______A;
(3)若B{x|x2x60},则3_______B;
(4)若C{xN|1x10},则8_______C,9.1_______C.
1.(1)中国A,美国A,印度A,英国A;
中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.
2 (2)1A A{x|xx}{0,.1 }
2 (3)3B B{x|x }x60}{3.,2
(4)8C,9.1C 9.1N.
2.试选择适当的方法表示下列集合:
(1)由方程x290的所有实数根组成的集合;
(2)由小于8的所有素数组成的集合;
(3)一次函数yx3与y2x6的图象的交点组成的集合;
(4)不等式4x53的解集.
22.解:(1)因为方程x90的实数根为x13,x23,
所以由方程x90的所有实数根组成的集合为{3,3};
(2)因为小于8的素数为2,3,5,7,
所以由小于8的所有素数组成的集合为{2,3,5,7};
yx3
y2x6x1y42 (3)由,得,
即一次函数yx3与y2x6的图象的交点为(1,4),
1/29
所以一次函数yx3与y2x6的图象的交点组成的集合为{(1,4)};
(4)由4x53,得x2,
所以不等式4x53的解集为{x|x2}.
1.1.2集合间的基本关系
练习(第7页)
1.写出集合{a,b,c}的所有子集.
1.解:按子集元素个数来分类,不取任何元素,得;
取一个元素,得{a},{b},{c};
取两个元素,得{a,b},{a,c},{b,c};
取三个元素,得{a,b,c},
即集合{a,b,c}的所有子集为,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.
2.用适当的符号填空:
(1)a______{a,b,c}; (2)0______{x|x20};
(3)______{xR|x210}; (4){0,1}______N;
(5){0}______{x|x2x}; (6){2,1}______{x|x23x20}.
2.(1)a{a,b,c} a是集合{a,b,c}中的一个元素;
(2)0{x|x20} {x|x0}
22 {;0}22(3){xR|x10} 方程x10无实数根,{xR|x10};
(4)
{0,1}
(5)
{0}N (或{0,1}N) {0,1是自然数集合N的子集,也是真子集; }{x|xx} (或{0}{x|xx}) {x|xx}222{0,;1 }
22(6){2,1}{x|x3x20} 方程x3x20两根为x11,x22.
3.判断下列两个集合之间的关系:
(1)A{1,2,4},B{x|x是8的约数};
(2)A{x|x3k,kN},B{x|x6z,zN};
(3)A{x|x是4与10的公倍数,xN},B{x|x20m,mN}.
2/29
3.解:(1)因为B{x|x是8的约数}{1,2,4,8},所以
AB;
(2)当k2z时,3k6z;当k2z1时,3k6z3,
即B是A的真子集,
BA;
(3)因为4与10的最小公倍数是20,所以AB.
1.1.3集合的基本运算
练习(第11页)
1.设A{3,5,6,8},B{4,5,7,8},求AB,AB.
1.解:AB{3,5,6,8}{4,5,7,8}{5,8},
AB{3,5,6,8}{4,5,7,8}{3,.4
2.设A{x|x24x50},B{x|x21},求AB,AB.
2.解:方程x24x50的两根为x11,x25,
方程x210的两根为x11,x21,
得A{1,5},B{1,1},
即AB{1},AB{1,1,5}.
3.已知A{x|x是等腰三角形},B{x|x是直角三角形},求AB,AB.
3.解:AB{x|x是等腰直角三角形},
AB{x|是. x等腰三角形或直角三角形}
4.已知全集U{1,2,3,4,5,6,7},A{2,4,5},B{1,3,5,7},
B),(求A(痧UA)( UB). U
4.解:显然
关于高一数学集合习题的问题,通过《有关高中不等式的例题》、《数学必修一答案》等文章的解答希望已经帮助到您了!如您想了解更多关于高一数学集合习题的相关信息,请到本站进行查找!
本文标签:高一数学集合习题(4)