158文章网欢迎您
您的位置:158文章网 > 范文示例 > 高中数学知识点公式清单

高中数学知识点公式清单

作者:158文章网日期:

返回目录:范文示例

今天小编给各位分享高中数学公式汇总的知识,文中也会对其通过高中数学知识点公式清单和高中数学知识点公式等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!

内容导航:
  • 高中数学知识点公式清单
  • 高中数学知识点公式
  • 高中理科数学公式知识点总结
  • 高二数学知识点及公式整理
  • 一、高中数学知识点公式清单

    高中数学知识点公式清单,整篇内容干货满满,一起来看都有哪些知识点内容。#关注##转发评论##电子版资料#

    666

    一、高中数学知识点公式

      导语:上了高中之后,数学对很多学生来是件头疼的事情。尤其是对女生来讲。但是,我想告诉大家的是:其实数学是最好得分的科目,同时数学又是高考成败的关键。学好数学,基础是关键。牢固并且灵活运用数学的基础知识很非常重要的!

      高中数学知识点框架清单:

      1、集合知识点

      2、不等式知识点

      3、常用逻辑用语知识点

      4、导数及其应用知识点

      5、概率知识点

      6、函数、基本初等函数知识点

      7、几何证明选讲知识点

      8、计数原理知识点

      9、解三角形知识点

      10、矩阵与变换知识点

      11、空间几何知识点

      12、空间向量及其应用知识点

      13、框图知识点

      14、平面向量知识点

      15、曲线与方程知识点

      16、三角函数知识点

      17、数列知识点

      18、数系的扩充与复数的引入知识点

      19、算法初步知识点

      20、随机变量及其分布列知识点

      21、统计与统计案例知识点

      22、推理与证明知识点

      23、圆柱、圆锥与圆锥曲线知识点

      24、圆锥曲线知识点

      25、直线与圆知识点

      26、坐标系与参数方程知识点

      高中数学有哪些重点公式?

      乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

      三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

      |a-b|≥|a|-|b| -|a|≤a≤|a|

      一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

      根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

      判别式

      b2-4ac=0 注:方程有两个相等的实根

      b2-4ac>0 注:方程有两个不等的实根

      b2-4ac<0 注:方程没有实根,有共轭复数根

      三角函数公式

      两角和公式

      sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      倍角公式

      tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctg

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      半角公式

      sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

      和差化积

      2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

      某些数列前n项和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

      正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

      余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

      圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

      圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

      抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

      直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

      正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

      圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

      圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

      弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

      锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

      斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

      柱体体积公式 V=s*h 圆柱体 V=pi*r2h

      【课外阅读】:

      影响高中数学成绩的原因及解决方法

      作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力.然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟头就栽在数学上。这种现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下:

      面对众多初中学习的成功者沦为高中学习的失败者,有人对他们的学习状态进行了研究、调查,表明,造成成绩滑坡的主要原因有以下几个方面.

      1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.没有真正理解所学内容。

      2.学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.

      3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.

      4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的'.

      解决对策:

      1.培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.

      制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.

      课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上.

      上课是理解和掌握基本知识、基本技能和基本方法的关键环节.“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼.

      及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”.

      独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”.

      解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的作业再做一遍.对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.

      系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”.

      课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情.

      2.循序渐进,防止急躁

      由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想凭几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.针对这些情况,学生应懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.

      3.研究学科特点,寻找最佳学习方法

      数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。

    二、高中理科数学公式知识点总结

    高中数学理科是10本书,文科是9本书,数学公式非常多,如果基础知识不扎实,平时做题查阅公式就要浪费很多时间。下面给大家带来一些关于高中数学公式知识点 总结 ,希望对大家有所帮助。

    一.圆的公式

    1、圆体积=4/3(pi)(r^3)

    2、面积=(pi)(r^2)

    3、周长=2(pi)r

    4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

    5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

    二.椭圆公式

    1、椭圆周长公式:l=2πb+4(a-b)

    2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.

    3、椭圆面积公式:s=πab

    4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

    以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

    三.两角和公式

    1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

    2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

    3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

    4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

    四.倍角公式

    1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

    2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

    五.半角公式

    1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

    2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

    3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

    4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

    六.和差化积

    1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

    2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

    3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

    4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

    5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

    七.等差数列

    1、等差数列的通项公式为:

    an=a1+(n-1)d (1)

    2、前n项和公式为:

    Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

    从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.

    在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.

    且任意两项am,an的关系为:

    an=am+(n-m)d

    它可以看作等差数列广义的通项公式.

    3、从等差数列的定义、通项公式,前n项和公式还可推出:

    a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

    若m,n,p,q∈N-,且m+n=p+q,则有

    am+an=ap+aq

    Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

    Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.

    和=(首项+末项)-项数÷2

    项数=(末项-首项)÷公差+1

    首项=2和÷项数-末项

    末项=2和÷项数-首项

    项数=(末项-首项)/公差+1

    八.等比数列

    1、等比数列的通项公式是:An=A1-q^(n-1)

    2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)

    且任意两项am,an的关系为an=am·q^(n-m)

    3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

    4、若m,n,p,q∈N-,则有:ap·aq=am·an,

    等比中项:aq·ap=2ar ar则为ap,aq等比中项.

    记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

    另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.

    性质:①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap-aq;

    ②在等比数列中,依次每 k项之和仍成等比数列.

    “G是a、b的等比中项”“G^2=ab(G≠0)”.

    在等比数列中,首项A1与公比q都不为零.

    九.抛物线

    1、抛物线:y=ax-+bx+c就是y等于ax的平方加上bx再加上c。

    a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

    2、顶点式y=a(x+h)-+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

    3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

    4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p-^2=2pyx^2=-2py。


    高中理科数学公式知识点总结相关 文章 :

    ★ 高三文科数学2020重要知识点归纳

    ★ 高中文科数学函数试题及答案

    三、高二数学知识点及公式整理

    只有高效的 学习 方法 ,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。以下是我给大家整理的 高二数学 知识点及公式整理,希望大家能够喜欢!

    高二数学知识点及公式整理1

    1、向量的加法

    向量的加法满足平行四边形法则和三角形法则。

    AB+BC=AC。

    a+b=(x+x',y+y')。

    a+0=0+a=a。

    向量加法的运算律:

    交换律:a+b=b+a;

    结合律:(a+b)+c=a+(b+c)。

    2、向量的减法

    如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

    AB-AC=CB.即“共同起点,指向被减”

    a=(x,y)b=(x',y')则a-b=(x-x',y-y').

    4、数乘向量

    实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

    当λ>0时,λa与a同方向;

    当λ<0时,λa与a反方向;

    当λ=0时,λa=0,方向任意。

    当a=0时,对于任意实数λ,都有λa=0。

    注:按定义知,如果λa=0,那么λ=0或a=0。

    实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

    当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

    当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

    数与向量的乘法满足下面的运算律

    结合律:(λa)·b=λ(a·b)=(a·λb)。

    向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

    数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

    数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

    3、向量的的数量积

    定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

    定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

    向量的数量积的坐标表示:a·b=x·x'+y·y'。

    向量的数量积的运算率

    a·b=b·a(交换率);

    (a+b)·c=a·c+b·c(分配率);

    向量的数量积的性质

    a·a=|a|的平方。

    a⊥b〈=〉a·b=0。

    |a·b|≤|a|·|b|。

    高二数学知识点及公式整理2

    1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

    2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

    3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

    高二数学知识点及公式整理3

    1.计数原理知识点

    ①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

    2.排列(有序)与组合(无序)

    Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

    Cnm=n!/(n-m)!m!

    Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

    3.排列组合混合题的解题原则:先选后排,先分再排

    排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

    捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

    插空法(解决相间问题)间接法和去杂法等等

    在求解排列与组合应用问题时,应注意:

    (1)把具体问题转化或归结为排列或组合问题;

    (2)通过分析确定运用分类计数原理还是分步计数原理;

    (3)分析题目条件,避免“选取”时重复和遗漏;

    (4)列出式子计算和作答.

    经常运用的数学思想是:

    ①分类讨论思想;②转化思想;③对称思想.

    4.二项式定理知识点:

    ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

    特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

    ②主要性质和主要结论:对称性Cnm=Cnn-m

    二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

    所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

    奇数项二项式系数的和=偶数项而是系数的和

    Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

    ③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

    5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

    6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。


    高二数学知识点及公式整理相关 文章 :

    ★ 高二数学知识点总结

    ★ 高二数学知识点及公式2020

    ★ 高二数学知识点及公式

    ★ 高中数学知识点总结及公式大全

    ★ 高二数学知识点总结全

    ★ 高二数学函数知识点总结

    ★ 最新高二数学公式知识点汇总

    ★ 高二数学必背知识点总结

    ★ 高二数学知识点全总结

    关于高中数学公式汇总的问题,通过《高中理科数学公式知识点总结》、《高二数学知识点及公式整理》等文章的解答希望已经帮助到您了!如您想了解更多关于高中数学公式汇总的相关信息,请到本站进行查找!

    相关阅读

    • 高中数学知识点公式清单

    • 158文章网范文示例
    • 今天小编给各位分享高中数学公式汇总的知识,文中也会对其通过高中数学知识点公式清单和高中数学知识点公式等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站
    • 高中数学:所有公式大全,高分必备!

    • 158文章网范文示例
    • 今天小编给各位分享高中数学公式汇总的知识,文中也会对其通过高中数学:所有公式大全,高分必备!和为什么有人说高考数学越来越简单了,你怎么看?等多篇文章进行知识讲解,
    关键词不能为空

    范文示例_作文写作_作文欣赏_故事分享_158文章网