返回目录:范文示例
今天小编给各位分享数轴课件的知识,文中也会对其通过海韵教育丨小学数学教学中极限思想渗透途径和小学数学教学中渗透教学思想方法有哪些等多篇文章进行知识讲解,如果文章内容对您有帮助,别忘了关注本站,现在进入正文!
内容导航:
一、海韵教育丨小学数学教学中极限思想渗透途径
极限思想为人们提供了从变量的无限变化中研究其变化趋势的数学方法,使人们通过无限逼近的方式在有限中认识无限、在近似中认识精确、 在量变中认识质变成为可能。因而,极限思想在日常生活、生产实践以及各个学科各个方面都具有广泛的应用,也是学生将来学习进一步学习数学必不可少的一种重要的基本思想方法。如何在小学数学教学中适时地渗透极限思想呢?下面结合对教学实践案例的思考,粗浅地谈一些具体途径和做法。
一、认数中渗透
数的认识是小学数学教学中最基础的重要内容,它是其它各领域知识得以生长和展开的基础。从自然数、零到分数、小数、负数等的学习贯穿了小学阶段学习的始终,我们在数的认识教学中,应引导学生立足于已有经验经历从具体到一般的过程,充分利用各种机会让学生体验各类数的无限,感受极限思想,促进学生良好数感的形成。如浙江省温州市教育学院雷子东老师在“分数的意义”教学中,有如下教学片段,很好地运用数轴让学生体会了对应思想和极限思想,具体过程如下:
上述教学片段,教者把分数回归运用于数轴,引领学生从理性的视角,对分数的本质进行深化认识,让学生经历“可以表示无数个分数,分子都是1,分母越大,离0越近”的认识,在发展学生数感的同时,学生真切的体验到分数个数的无限,以及分母越大的分数单位无限逼近0的事实,有效地渗透了极限思想。
二、操作中渗透
数学是研究空间形式与数量关系的科学,主要有两个方向:“数”和“形”,“数”是指数量关系 ,“形”是指空间形式。数与形常常是结合在一起的, 内容上相互联系, 方法上相互渗透, 并在一定条件下互相转化。小学生的思维正处于具体形象思维向抽象逻辑思维过渡的阶段,抽象的概念学生根本无法接受,必须运用直观手段给以外化后在教师的引导下逐步让学生理解掌握,让学生通过操作运用多种感官参与学习活动就是有效的方式之一。在操作活动中,有不少现象与无限有关,教学中应及时地抓住体现“无限”的时机给予引申,让学生领略“无限”的含义,培养学生的极限思想。如一位教师教学“直线、线段、射线”时,设计了一个“在半分钟之内通过一点画射线”的操作活动,其教学反馈过程如下:
师:你画了几条?
生1:4条。
生2:8条。
生3:我画了13条……
师:还有比13条多的吗?
生4:我画了25条。
师:如果在给你更多的时间,你觉得还可不可以多画?
生:能。
教师借助多媒体放大学生的作业纸,让学生画射线,在画到看不清的时候,用课件演示画更多的射线,在充分感知的基础上,引导学生得出了“通过一点可以画无数条射线”的结论。
上述教学过程,教师舍得在“通过一点可以画无数条射线”的具体操作上花时间,在学生画出4条、8条、13条、25条后,没有急于下结论,而是创设“给你更多的时间,你觉得还可不可以多画”的情景,继续演绎动手画射线的操作活动,并借助计算机辅助教学巧妙生动的演示,让学生体验即使画了很多条,还可以再画。使学生对“无限”的感悟水到渠成,极限思想的渗透得到充分体现。
数学思想方法是数学知识不可分割的有机组成部分, 如果说数学教材中的基础知识和基本技能是一条明线的话,那么蕴含在教材中的数学思想方法就是一条暗线。为此,我们在学生掌握基础知识、形成基本技能的过程中,应适时地抓住教学内容中的有利因素,有意识地在知识技能形成或运用的推理过程中加以引导渗透,让学生在归纳与演绎推理过程中感悟极限思想。如 “商不变的性质”教学时,在巩固练习环节,一位教师设计了这样一个练习:在□里填上什么数,使商不变?
反馈时,教师利用最后一小题进行引导,在推理中渗透极限思想,过程如下:
师:这题该怎么填?
生:填4。
师:有不同答案吗?
生:填1。
生:可以填1——9各数。
生:可填任何数,只要相同就可以了。
师:听明白他的意思了吗?
生:0除外。
师:为什么?
生:因为任何除数除以0没有意义。
师:如果老师用a表示这个数,行吗?
上述教学过程针对一个开放性练习题,适度挖掘,适时渗透其中的极限思想,在反馈过程中以最后一小题(56÷□)÷(8÷□)=7为载体和话题,根据学生的回答引导学生体验“□”里可以填的数是无限的,并及时的加以概括和抽象,用a表示“□”中的数,既巩固了学生对商不变性质的理解,又培养学了生初步的数学归纳推理能力,还在对无限的答案的归纳推理中感悟了极限的数学思想。
极限思想实质上是一种逼近思想,而且是一种无限逼近的思想,灵活地借助极限思想,可以将某些数学问题化难为易,避免一些复杂运算,探索出解决问题的方向或途径。小学阶段有许多数学知识需要利用这种逼近的思想方法进行探索,用逼近的思想方法探索规律与知识的过程也是培养学生极限数学思想的宝贵时机,我们要充分利用这个探索过程,引导学生在“无限接近”的想象思维中,从有限认识无限,从近似认识精确,从量变认识质变,渗透极限思想。如在“圆的面积”教学中,一位教师的教学过程如下:
师:(出示一个圆)要知道这个圆的面积,怎么办?
生:可以转化成我们学过的图形计算。
师:怎么转化?
生:把圆平均分。
师:(课件把圆平均分成2份)把两个半圆拼在一起还是一个圆啊,转化不成我们学过的图形。怎么回事?
生:平均多分几份。
师:是这样吗?那我们再分得多一些,请大家仔细观察。(课件演示把一个圆平均分割成小扇形,并拼试图成长方形,依次演示平均分成4个、8个、16个的情形)
师:你们发现了什么?
生:分数越来越多,拼成的图形越来越像长方形。
师:我们再来分一分这个圆(课件演示平均分成32份、64份,并拼成近似的长方形)
师:同学们看一看,想一想,如果这样一直分下去,拼下去会怎么样?
生:拼成的图形会变成长方形,因为长方形的长边越来越直了。
师:这些拼成的长方形与原来的圆有怎样的关系?……
圆面积公式的推导,一般都是用无限逼近的思想方法,把圆分割成许多同样的小扇形,再补拼成一个近似的长方形(也可以是梯形、三角形或平行四边形)。当分割的小扇形增多时,每个小扇形的曲边会因逐渐变短而变直,拼成的图形就会越接近于长方形,然而这仅仅是近似的长方形。如何变为准确的长方形呢?上述教学片段及时地让学生“想一想,如果这样一直分下去,拼下去会怎么样?”使学生在想像中体会当圆分割成的小扇形无限增多时,所拼成的长方形便转化成“标准”的长方形了,从而可以准确的求出圆的面积。这一过程非常自然地让学生体会了“无限逼近”的方法,极限思想得到了有效地体验和渗透。
笛卡尔说过:“数学是使人变聪明的一门科学,而数学思想的教学则是传导数学精神、形成世界观不可缺少的条件。”在小学教学中应注意渗透的长期性,应该认识到对学生极限思想的渗透不是一朝一夕的,而是有一个过程,同时其渗透途径也是多样的,必须经过长期循序渐进和多途径的反复体验感悟, 才能使学生的数学思想逐步的得到充实和丰满。
作者:李帮魁(重庆市沙坪坝区教师进修学院)
结构化教学的应用 ¥51.75 购买一、小学数学教学中渗透教学思想方法有哪些
一、小学数学教学中渗透数学思想方法的必要性 所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法, 是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法 的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例 题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的 心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识 的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程, 即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型” 、“记忆型”的,将完全背离数学教育的目标。 在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性 的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法 就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是 培养学生分析问题和解决问题能力的重要途径。 数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作 用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国 际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和 国际数学教育发展的必然结果。 小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强 学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好 比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横 两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基 本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。二、小学数学教学中应渗透哪些数学思想方法 古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年 龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的 。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而 且对学生数学能力的提高有很好的促进作用。 1.化归思想 化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个 较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。 例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4 1/2 米,黄鼠狼每次可向前跳2 3/4米。它们每 秒种都只跳一次。比赛途中,从起点开始,每隔12 3/8米设有一个陷阱, 当它们之中有一个掉进陷阱时,另 一个跳了多少米? 这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每 次所跳距离4 1/2(或2 3/4)米的整倍数,又是陷阱间隔12 3/8米的整倍数,也就是4 1/2和12 3/8的“ 最小公倍数”(或2 3/4和12 3/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉 入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小 公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。 2.数形结合思想 数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长 方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。 例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲 五次一共喝了多少牛奶? 附图{图} 此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策 略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求, 这里不但向学生渗 透了数形结合思想,还向学生渗透了类比的思想。 3.变换思想 变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换 ,几何形体中的等积变换,理解数学问题中的逆向变换等等。 例3 求1/2+1/6+1/12+1/20+……+1/380的和。 仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4, 20=4×5……380=19×20,再用拆分的 方法,考虑和式中的一般项 a[,n]=1/n×(n+1)=1/n-1/n+1 于是,问题转换为如下求和形式: 原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1 /19×20 =(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1 /4-1/5)+……+(1/19-1/20) =1-1/20 =19/20 4.组合思想 组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。 例4 在下面的乘法算式中,相同的汉字代表相同的数字, 不同的汉字代表不同的数字,求这个算式。 从小爱数学 × 4 ────── 学数爱小从 分析:由于五位数乘以4的积还是五位数, 所以被乘数的首位数字“从”只能是1或2,但如果“从”=1, “学”×4的积的个位应是1,“学”无解。所以“从”=2。 在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于 8,所以“学”=8。 在千位上,由于“小”×4不能再向万位进位,所以“小”=1 或0。若“小”=0,则十位上“数”×4+ 3(进位)的个位是0,这不可能,所以“小”=1。 在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。 在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。 故欲求乘法算式为 2 1 9 7 8 × 4 ────── 8 7 9 1 2 上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。 此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、 适时地进行渗透。
三、小学数学教学应如何加强数学思想方法的渗透 1.提高渗透的自觉性 数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学 知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常 常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先 要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时 纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数 学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪 些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。 2.把握渗透的可行性 数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法 教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。 同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学 知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。 3.注重渗透的反复性 数学思想方法是在启发学生思维过程中逐步积累和形成的。为此,在教学中,首先要特别强调解决问题以 后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。如通过 分数和百分数应用题有规律的对比板演,指导学生小结解答这类应用题的关键,找到具体数量的对应分率,从 而使学生自己体验到对应思想和化归思想。其次要注意渗透的长期性,应该看到,对学生数学思想方法的渗透 不是一朝一夕就能见到学生数学能力提高的,而是有一个过程。数学思想方法必须经过循序渐进和反复训练, 才能使学生真正地有所领悟。
二、在数学教学中怎样渗透思维方法
一、在备课环节中渗透教师要把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。对教材中的每一章节,都要考虑如何结合具体内容进行数学思想方法的渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度。教学中,教师要站在数学思想方面的高度,对教学内容,用恰当的语言进行深入浅出地分析,把隐蔽在知识内容背后的思想方法提示出来。
二、新课讲授中渗透
深入挖掘隐含在教材里的数学思想方法,精心设计课堂教学过程,展示数学思维过程,这样才有助于学生了解其中数学思想方法的产生、应用和发展的过程。不同的教学内容,可根据其特点,选配不同的数学思想方法进行教学。教学过程中,通过以下途径及时向学生渗透数学思想方法:在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。
三、在学生解题中渗透
数学教学,不仅是学生有效地运用数学知识、探寻解题的方向和入口,对培养人的思维素质有着特殊不可替代的意义。新授课中属“隐含、渗透”阶段,练习中进入明确、系统的阶段。学生解题过程里,不但对已掌握的数学知识及数学思想方法会起到巩固和深化的作用,还从中归纳提炼出新的数学思想方法。思想方法的教学过程首先是从模仿开始,学生按照例题示范程序与格式解答相同类型的习题,实际上是思想方法的运用。
四、在归纳总结中渗透
课堂教学小结、单元复习时,适时对某种数学思想方法进行概括和强化,可使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的精神实质。
在章节小结、复习的数学教学中,注意从纵横两个方面,总结复习数学思想与方法。一方面是课中有意地渗透,另一方面是靠学生在反思总结中深刻领悟。在总结延伸某一思想方法的时候,教师要有意识地引导学生自觉地反思自己的思维过程,反思自己是怎样发现问题、分析解决问题的。逐步体会数学思想方法的精神实质,提高自觉应用意识。
三、小学数学教学中应渗透哪些数学思想方法
以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。1.化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。例1 狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳20米,黄鼠狼每次可向前跳6米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔15米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离20(或6)米的整倍数,又是陷阱间隔15米的整倍数,也就是20和15“ 最小公倍数”。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2.数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系使问题简明直观。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。
3.组合思想
组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。
4.“函数”思想
函数是近代数学的重要概念之一,在现代科学技术中广泛应用,在小学数学教材中,函数思想的渗透非常广泛。在第一学段,通过填图等形式,将函数思想渗透其中;在第二学段,学生掌握了许多计算公式,如s=vt等,这些计算公式实际上就是一些简单的函数关系式;到了六年级,正、反比例的意义是渗透函数思想的重要内容,因为成正比例和反比例的量反映的是两个变量之间的依存关系。
此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
此外还有集合思想、符号化思想、对应思想等数学思想和方法。
关于数轴课件的问题,通过《在数学教学中怎样渗透思维方法》、《小学数学教学中应渗透哪些数学思想方法》等文章的解答希望已经帮助到您了!如您想了解更多关于数轴课件的相关信息,请到本站进行查找!