158文章网欢迎您
您的位置:158文章网 > 故事分享 > 要3篇长一些的数学趣味故事

要3篇长一些的数学趣味故事

作者:158文章网日期:

返回目录:故事分享


1、蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
2、数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
3、八岁的高斯发现了数学定理
德国著名大科学家高斯(1777~1855)出生在一个贫穷的家e799bee5baa6e997aee7ad94e4b893e5b19e364庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。
长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。
他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。
这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。
“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。


我的最有吸引力!!!!!!!!!!!!!!!!!!!!!!!! 哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。

  有一次,哥德巴赫研究一个数论问题时,他写出:

  3+3=6,3+5=8,

  3+7=10,5+7=12,

  3+11=14,3+13=16,

  5+13=18,3+17=20,

  5+17=22,……

  看着这些等式,哥德巴赫忽然发现:等式左边都是两个质数的和,右边都是偶数。于是他猜想:任意两个奇质数的和是偶数,这当然是对的,但可惜这只是一个平凡的命题。

  对—般的人,事情也许就到此为止了。但哥德巴赫不同,他特别善于联想,善于换个角度看问题。他运用逆向思维,把等式逆过来写:

  6=3+3,8=3+5,

  10=3+7,12=5+7,

  14=3+11,16=3+13,

  18=5=13,20=3+17,

  22=5+17,……

  这说明什么?哥德巴赫自问,然后自答:从左向右看,就是6~22这些偶数,每一个数都能“分拆”成两个奇质数之和。在一般情况下也对吗?他又动手继续试验:

  24=5+19,26=3+23,

  28=5+23,30=7+23,

  32=3+29,34=3+31,

  36=5+31,38=7+31,

  ……

  一直试到100,都是对的,而且有的数还不止一种分拆形式,如

  24=5+19=7+17=11+13,

  26=3+23=7+19=13+13

  34=3+31=5+29=11+23=17+17

  100=3+97=11+89=17+83

  =29+71=41+59=47+53.

  这么多实例都说明偶数可以(至少可用一种方法)分拆成两个奇质数之和。在一般情况下对吗?他想说:对!于是他企图找到一个证明,几经努力,但没有成功;他又想找到一个反例,说明它不对,冥思苦索,也没有成功。

  于是,1742年6月7日,哥德巴赫提笔给欧拉写了一封信,叙述了他的猜想:

  (1)每一个偶数是两个质数之和;

  (2)每一个奇数或者是一个质数,或者是三个质数之和。

  (注意,由于哥德巴赫把“1”也当成质数,所以他认为2=1+1,4=1+3也符合要求,欧拉在复信7a64e78988e69d83361中纠正了他的说法。)

  同年6月30日,欧拉复信说,“任何大于(或等于)6的偶数都是两个奇质数之和,虽然我还不能证明它,但我确信无疑,它是完全正确的定理。”

  欧拉是数论大家,这个连他也证明不了的命题,可见其难度之大,自然引起了各国数学家的注意。

  人们称这个猜想为哥德巴赫猜想,并比喻说,如果说数学是科学的皇后,那么哥德巴赫猜想就是皇冠上的明珠。二百多年来,为了摘取这颗耀眼的明珠,成千上万的数学家付出了巨大的艰苦劳动。

  1920年,挪威数学家布朗创造了一种新的“筛法”,证明了每一个充分大的偶数都可以表示成两个数的和,而这两个数又分别可以表示为不超过9个质因数的乘积。我们不妨把这 个命题简称为“9+9”。

  这是一个转折点。沿着布朗开创的路子,932年数学家证明了“6+6”。1957年,我国数学家王元证明了“2+3”,这是按布朗方式得到的最好成果。

  布朗方式的缺点是两个数都不能确定为质数,于是数学家们又想出了一条新路,即证明“1+C”。1962年,我国数学家潘承洞和另一位苏联数学家,各自独立地证明了“1+5”,使问题推进了一大步。

  1966年至1973年,陈景润经过多年废寝忘食,呕心沥血的研究,终于证明了“1+2”:对于每一个充分大的偶数,一定可以表示成一个质数及一个不超过两个质数的乘积的和。即

  偶数=质数+质数×质数

  你看,陈景润的这个结果,离哥德巴赫猜想的最后解决只有一步之遥了!人们称赞“陈氏定理”是“辉煌的定理”,是运用“筛法”的“光辉顶点”。

  想想练练

  1.50以内有15个质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47.请选出10个填入图内,使○+○的和等于同一个50以内的偶数,把这个偶数填入中间的○内。

  2.用给出的:3、3、5、5、7、7、11、11、13、13、17、17、19、23、23、23这16个数,根据哥德巴赫猜想,写出8个连续的偶数。

  摘取数学皇冠上的明珠——陈景润 (1933~1996)
  在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起。被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。

  1953年,陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“罗庚慧眼识景润”的佳话。虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努力, 终于取得了震惊世界的成就。然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾。即使如此,躺在病榻上的他,仍锲而不舍地耕耘着。陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献。

  欧 拉

  欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。

  欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。

  尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。

  欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:
  又把三角函数与指数函联结起来。

  1. 从前有一位老年人,在他临终时,三个儿子围在床前。
    他对儿子们说:“我有十七匹马,留给你们,三个人分。分马的时候,老大呢,出力最多,得总数的二分之一;老二嘛,得总数的三分之一;老三最小,你呀,就拿总数的九分之一。”
    勉强说完这几句,老人就去世了。三兄弟执行遗嘱时,一致认为这些马是父亲生前心爱之物,决不能将其中任何一匹劈成几块瓜分。但是遗嘱又要完全照办,如何是好呢?
    正巧,这时他们的老娘舅骑马赶来了,听完事由,眉毛一扬,说:“我来分。”
    猜猜看,老娘舅怎样分马?
    因为希望每人得到的马都是整数匹,所以根据遗嘱,在分马的时候,马的匹数应该是三个分母的公倍数。分母2、3、9的最小公倍数是18,因而在分马时的马匹总数最好能成为18的倍数。老人留给儿子们的马是17匹,老娘舅把自己带来的一匹马临时借出来凑数,共有18匹马参加分配。
    准备就绪,老娘舅开始宣读和执行遗嘱:
    “……分马的时候,老大呢,出力最多,得总数的二分之一……”宣读到这里,老娘舅数出9匹马,让老大领过去:
    老二嘛,得总数的三分之一……”读到这里,老娘舅数出6匹马,让老二领过去:
    “老三最小,你呀,就拿总数的九分之一。”读完最后这一句,老娘舅数出2匹马,让老三领过去:
    三位晚辈分到手的马,总和恰好是父亲留下的17匹:
    9+6+2=17。
    分马场地上的18匹马,现在剩下最后一匹,这当然就是老娘舅自己带来临时借用的那匹,依然物归原主。

  2. 取胜的对策
    战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
    下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。如果让你先报数,你第一次应该报几才能一定获胜?
    分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。88=9×9+7,依次类推,谁报数后使和为16,谁就获胜。进一步,谁先报7,谁就获胜。于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。这样,当你报第10个数的时候,就会取得胜利。

  3. 狐狸瘸着腿一拐一拐地走着,心里琢磨着怎样才能发财。

      瘸腿狐狸看见老山羊在卖大葱,走过去问:“老山羊,这大葱怎样卖法?共有多少葱啊?”

      老山羊说:“1千克葱卖1元钱,共有100千克。”

      瘸腿狐狸眼珠一转,问:“你这葱,葱白多少,葱叶又是多少呀?”

      老山羊颇不耐烦地说:“一棵大葱,葱白占20%,e799bee5baa6e79fa5e98193e58685e5aeb9331其余80%都是葱叶。”

      瘸腿狐狸掰着指头算了算,说:“葱白哪,1千克我给你7角钱。葱叶哪,1千克给你3角。7角加3角正好等于1元,行吗?”

      老山羊想了想,觉得狐狸说得也有道理,就答应卖给他了。狐狸笑了笑,开始算钱了。

      狐狸先列了个算式:

      0.7×20+0.3×80=14+24=38(元),然后说:“100千克大葱,葱白占20%,就是20千克。葱白1千克7角钱,总共是14元;葱叶占80%,就是80千克,1千克3角钱,总共是24元。合在一起是38元。对不对?”

      老山羊算了半天,也没算出个数来,只好说:“你算对了就行。”

      “我狐狸从不蒙人!给你38元,数好啦!”狐狸把钱递给了老山羊。老山羊卖完葱往家走,总觉得这钱好像少了点,可是少在哪儿呢?想不出来。他低头看见小鼹鼠从地里钻了出来。他让小鼹鼠帮忙算算这笔帐。

      小鼹鼠说:“你原来大葱是1千克卖1元。你有100千克,应该卖100元才对,瘸狐狸怎么只给你38元呢?”

      老山羊点了点头,知道自己吃亏了。可是他不明白,自己是怎样吃的亏?

      鼹鼠说:“狐狸给你1千克葱白7角,1千克葱叶3角,合起来算是2千克才1元钱,这你已经吃一半亏了。”

      老山羊问:“吃一半亏,我也应该得50元才对,怎么只得38元呢?”

      鼹鼠写了一个算式:

      (1-0.7)×20+(1-0.3)×80=6+56=62(元)。“你1千克葱白吃亏0.3元,20千克吃亏6元;1千克葱叶吃亏0.7元,80千克吃亏56元,合起来正好少卖了62元。”

      老山羊掉头就往回跑,看见狐狸正在卖葱,每千克卖2元。老山羊二话没说,一低头,用羊角顶住瘸腿狐狸的后腰,一直把他顶进了水塘里。

    亲,我写的就是五年级的啊,直接写了答案哦

相关阅读

  • 要3篇长一些的数学趣味故事

  • 158文章网故事分享
  • 1、蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半
  • 三个数学家小故事

  • 158文章网故事分享
  • 蜗牛的趣味名人汉代数学家张衡,两度担任太史令。这是古代皇家天文台台长,负责历法修订和天文观测,他数学上一项对圆周率继承了刘歆工作,下开祖冲之。天文方面掌握日月食原
  • 数学家的小故事有什么

  • 158文章网故事分享
  • 1、数字趣联 宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用
  • 三篇数学家的小故事(300字以下)

  • 158文章网故事分享
  • 20世纪最伟大的科学家阿尔伯特.爱因斯坦Albert Einsteni(1879--1955)  发展独立思考7a686964616fe78988e69d83335和独立判断的一般能力,应当始终放在首位,而不应当把获得专业知识放在首位。如
  • 数学小故事或数学家的故事

  • 158文章网故事分享
  • 1、阿基米德诞生于希腊西西里岛叙拉古附近的一个小村庄,他出生于贵族,与叙拉古的赫农王有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。
  • 数学家的故事(要简短,300字以内)急用!!!!

  • 158文章网故事分享
  • 陈景润(1933.5~1996.3)是中国现代数学家。 1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥
关键词不能为空

标签导航

长城:中国故事的观后感 长城中国故事的观后感 长城中国的故事观后感 《长城:中国故事》观后感 校园写景作文桂花怎么写 校园的景色作文怎么写 校园写景作文怎么写呀 描写校园景色的作文要怎么写 过年作文500字 关于过年的作文400字以上 关于春节的作文400字 过年的作文400字以上 有趣的数学小故事(50字数 三篇数学家的小故事(300字以下) 生活中的数学小故事100字3篇要快,急急急急急急急... 三篇有趣的数学故事,急要!!!!!!!! 楚才作文获奖标准 2017年楚才作文命题有哪些变化?怎样写一篇好的竞赛作文 2017楚才作文什么时候出结果 2017楚才作文报名多少钱 学生安全保证书怎么写 十月小学生安全保证书怎么写? 在校安全保证书怎么写? 学生安全保证书开头怎么写 关于保护动物的英语作文 保护动物的英语作文 一篇关于保护动物的英语作文 关于劝说的作文三百字左右 关于劝说的作文500字 关于一次劝说的作文 关于劝说的作文800字左右(急求!!) 盲人摸象然后我们明白一个什么道理 《盲人摸象》说明了什么道理? 通过《盲人摸象》这个故事 明白了一个什么道理? 盲人摸象的故事说明了什么道理 急求英语作文一篇.(四六级水平) 四级,六级,考研英语作文有什么区别 一篇关于英语四级有没有用的英语作文120词以上,别超过20... 求最新的十年四六级英语作文题目汇总,或者哪个网站总结得比较好... 初二英语作文,关于保护动物的 请教大家关于“保护动物”的英语建议! 我最喜欢的动物和保护动物的建议英语作文 用英语写三条保护动物的建议 外国神话故事的所有内容? 外国神话故事的名字 外国的神话故事名字有那些 国内外的神话故事的名字! 描写动物的小作文200字 描写动物的作文3篇200字左右 写动物的作文200字以上 写一个小动物的作文200字 生活老师工作总结 生活老师工作总结范文

范文示例_作文写作_作文欣赏_故事分享_158文章网