返回目录:故事分享
十个数学家的故事:
1、前212年,古罗马军队突破城防,打进了叙拉古。年已75岁的阿基米德仍在潜心研究数学,证明他的几何题。凶神恶煞的士兵把刀剑指向了他的脑袋。阿基米德明白了将要发生的事情,坦然自若地说:“等一下杀我的头,让我把这条几何定理证完。”然而,无知而又残暴的罗马士兵,一刀砍掉了阿基米德的头颅。
2、华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!”
3、南北朝时期伟大的数学家祖冲之,将圆周率计算到了小数点后面第七位。证明了圆周率位于3.1415926和3.1415127之间。比欧洲人得到同样的结果早了一千多年。
4、华罗庚小时候帮助父亲做生意,打算盘、记账。那时华罗庚站在柜台前,顾客一走就又埋头看书演算起数学题来。有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓了一跳。每逢遇到怠慢顾客的事情发生,父亲又气又急,说他念“天书”念呆了,要强行把书烧掉。争执发生时,华罗庚总是死死地抱着书不放。
5、数学家陈景润边思考问e799bee5baa6e78988e69d83334题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。
6、16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。
7、哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。
8、高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。
9、欧拉,小时候因为问了老师星星有多少,触怒了老师的信条,被退学,结果成了一个牧童。但欧拉还热爱着学习,小欧拉成了这所大学最年轻的大学生。
10、阿基米德把皇冠和与它相同的真皇冠各放进一盆水里,测量溢出来的水,得知此皇冠比真皇冠轻,说明掺了金属。
阿基米德
叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
古希腊是数学的故乡.古希腊人为数学的进步耗费了大量心血甚至生命,做出了卓越的贡献.这个文明古国哺育了许多数学家,象泰勒斯、毕达哥拉斯、欧几里德、阿波罗尼斯、阿基米德、托勒密、海伦、丢番图等.希帕蒂娅(Hypatia)——这位有史以来的第一位女数学家也诞生在这里。
希帕蒂娅
(又译海帕西娅)(Hypatia)(约370--415)。出生在埃及。是古希腊著名数学家。人称世界上第一位女数学家。这位聪慧的女性以她的才华和贡献跻身于古代世界最优秀的学者之列。而她的惨死实为一千古悲剧。野蛮、残忍的宗教狂徒们竟对她下了毒手。
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.e799bee5baa6e997aee7ad94e58685e5aeb9363祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.
苏步青
1902年9月出生在浙江省。上初三时,来了一位数学老师。他讲:“当今世界,世界列强都想瓜分中国。中华亡国的危险迫在眉睫。为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。” 17岁,苏步青赴日留学。日本一个大学他去当副教授时,苏步青却决定回国。面对困境,他的回答是:“吃苦算得了什么,我心甘情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比e799bee5baa6e58685e5aeb9363沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
工作到最后一天的华罗庚
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。
记者在一次采访时问他:“你最大的愿望是什么?”
他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。
21世纪七大数学难题
美国的克雷数学研究所于2000年5月24日在巴黎宣布了众多数学家评选的结果:对七个“千禧年数学难题”的每一个悬赏一百万美元。
“千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程。
卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。数学和自然科Х⒄蛊鸬搅司薮蟮淖饔谩?
笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。
笛卡儿在物理学,生理学和天文学方面也有许多独到之处。
韦 达
韦达(1540-1603),法国数学家。年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步。韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式。
主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家。
高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
数学家华罗庚小时候的轶事
华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。
华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。
金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
1,伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长百,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自度己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
2,16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小问数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被答誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语 ,
3,小学老师任务:对回自然数从答1到100的求和。学生们都算不出来只有一个学生算出了结果5050,老师问他怎么算的,学生使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这个学生就是高斯,这一年,他9岁。
还要不?