作者:158文章网日期:
返回目录:故事分享
祖冲之是我国南北朝时期,杰出的数学家、天文学家。特别对抄"圆周率"的研究,更是超越前代。他采用了三国时刘徽的方法,从正六边形算起, 要算到24576边,每一运算要反复进行十二次又包括加减乘百除和开方等十多个步骤。当时祖冲之只能用筹码(小竹棍)来逐步度推演。如果祖冲之没有顽强刻苦的研究精神,,是绝对不会成功的。
祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这zhidao是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,内运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之容在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。
祖父经常给祖冲之讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵.
祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍.
天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道e69da5e6ba907a686964616f335得很少.
祖冲之不喜欢读古书.5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句.气得父亲又打又骂.可是他喜欢数学和天文.
一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对.
第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆.
一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:
“让我用绳子量量您的车轮,行吗?”老人点点头.
祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径.量来量去,他总觉得车轮的直径没有1/3的圆周长.
祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的.
这究竟是为什么?这个问题一直在他的脑海里萦绕.他决心要解开这个谜.
经过多年的努力学习,祖冲之研究了刘徽的“割圆术”.所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长.
祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 .14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果.
当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算.
祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来.
此时,祖冲之的儿子祖 已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 .000002丈.
祖 对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了.”祖冲之却摇摇头说:“要推翻他一定要有科学根据.”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的.
祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休.
祖冲之从12288边形,算到24567边形,两者相差仅0 .0000001.祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 .1415926,而小于3 .1415927.
很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教.之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7.直到1000多年后,德国数学家鄂图才得出相同的结果.
扩展资料
祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。