作者:158文章网日期:
返回目录:故事分享
约1500年前。中来国有一位伟大的数学家和天文学家祖冲之源。他计算出圆周率应在3.1415926和3.1415927之间,成为世百界上第一个把圆周率的值精确到7位小数的人。他的这度项伟大成就比外国数学家得知出这样精确数值的时间,至少要道早一千年
祖父经常给祖冲之讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵.
祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍.
天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少.
祖冲之不喜欢读古书.5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句.气得父亲又打又骂.可是他喜欢数学和天文.
一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对.
第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆.
一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:
“让我用绳子量量您的车轮,行吗?”老人点点头.
祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径.量来量去,他总觉得车轮的直径没有1/3的圆周长.
祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的.
这究竟是为什么?这个问题一直在他的脑海里萦绕.他决心要解开这个谜.
经过多年的努力学习,祖冲之研究了刘徽的“割圆术”.所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半e799bee5baa6e59b9ee7ad94335径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长.
祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 .14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ⋯⋯ 以求得更精确的结果.
当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算.
祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来.
此时,祖冲之的儿子祖 已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 .000002丈.
祖 对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了.”祖冲之却摇摇头说:“要推翻他一定要有科学根据.”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的.
祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休.
祖冲之从12288边形,算到24567边形,两者相差仅0 .0000001.祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 .1415926,而小于3 .1415927.
很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教.之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7.直到1000多年后,德国数学家鄂图才得出相同的结果.
扩展资料
祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
古希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》e5a48de588b6e799bee5baa6363(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。至今,最新纪录是小数点后25769.8037亿位。