作者:158文章网日期:
返回目录:作文写作
万花筒---六年级学生数学日记
2月10日 星期三 晴
八路实验小学六(7)班马维力
利用除法来比较分数的大小
今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。e79fa5e98193e59b9ee7ad94338顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:36:26
--
2月12日 星期五晴
八路实验小学六(7)班 马维力
今天,我在数学1+2训练上看到这么一题,在一底面积为648平方厘米的立方体铸体中,以相对的两面为底去掉最大的一个圆柱体,求剩下的立体图形面积是多少?
看到这个题目,我犯糊涂了,想:只告诉一个底面积,这怎么求啊?坐在椅子上的妈妈看了,嘲笑我说:“哼,还说高水平哩,连这道题都不会做。”
我知道妈妈用的是激将法,目的是激怒我的好胜心,让我把这题做完。为了让妈妈认为她的激将法成功了,我就硬着头皮做了下去,可是怎么想也理不出头绪来。但是我并没灰心,继续做了下去,我做了出来。
根据图(要画图)可以发现,切掉一个圆柱,又出来一个同原来圆柱同样大的洞,虽然这洞与圆柱体体积相同,但是它们的表面积并不相同,而是比原来圆柱少了两个底面的面积。
所以剩下的图形面积应该等于正方体6个面的面积减去圆柱的两个底面+圆柱的侧面。
列算式是628×6-628×3.14÷4×2+628×3.14
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:36:49
--
2月14日 星期六 晴
八路实验小学六(7)班马维力
今天又是一个阳光明媚的日子,我在大街上闲逛,突然看到不远处有很多人围在一起。我跑过去一年,原来是抓奖游戏。“哼,抓奖有什么好玩的。”我厌烦地说旁边的人一听,连忙说:“抓奖虽不好玩,但有重奖,可吸引人了。”我急切地问:“是什么呀!”“50元钱。”那人噔大眼睛说。一听这话,我可来劲了,“这么诱人的的奖品,说什么,我也得试试。”说完,我便问店主怎么抓法。店主说:“这是24个麻将,麻将下写着12个5,12个10,每次只可抓12个麻将,如果12个麻将标的数总和为60,那么你便可得50元大奖。”我听了也没多卷起了袖子,从兜里掏出5元钱给了店主。
尽管,这可以抓10次,但那份大奖我还是没有拿到。
回到家之后,我想了想,感觉有点不对劲。我想,抓60分,那必须抓得那12个麻将必须都标5,最好的情况就是第1次抓到1个5,第2次抓2个5,第3次抓3个5……第12次抓12个5至少得花去6元钱。但万一抓得那些麻将标的数是10或有的总和是相同的,那么得抓多少次花多少钱。
最后经过一番考虑,终于把问题弄清了,我抓紧到街上找那算帐,可已经跑得无影无踪了。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:37:21
--
2月16日 星期一晴
八路实验小学 六(7)班 欧创
题目:有粗细不同的两枝蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时。有次停电,将这样的两枝求用过的蜡烛同时点燃,来电时,发现两枝蜡烛所剩的长度一样,问停电多长时间?
解题思路:如高粗蜡烛长为1,燃烧的速度分别为:(1)1÷2=1/2(2)2÷1=2要设停电时间为X小时那么式子就是:1—1/2X=2—2X分析已知细蜡烛占粗蜡烛的1/2,粗蜡烛就是细蜡烛的2倍,求停电多少小时,也就是第一根燃烧多少时。
解:设停电时间为X小时。
1—1/2X=2—2X
X=2/3
答:停电时间为2/3小时。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:37:57
--
2月18日星期三晴
八路实验小学六(7)班 徐瑞祥
今天下午,我在《小学生双色课课通》上看到了这样一道题。
一个圆锥底面半径是8分米,高的长度与底面半径的比3:2,这个圆锥的体积是多少立方分米?
分析:这是一道按比例分配的应用题与圆锥方面的题相结合的应用题。求圆锥的体积是多少,要知道圆锥的底面积和高,题中告诉了底面半径,可求出底面积,而高却不知道,可以根据一个条件求出,可将比转化成一个数占已知数的几分之几,即可知道高占底面半径的3/2。算出高后,然后根据“V=SH÷3”算出圆锥的体积。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:38:34
--
2月21日星期六阴
八路实验小学六(7)班王光普
生活中的小发现
今天早晨,我制作了一个小电灯,用的是两节电池和一根钢丝和一个小电灯泡制做的,先准备了两个电灯泡,生怕晚上玩的时候会闪了。到了晚上,我出去转悠一圈,我拿出了小电灯一照了一圈,我发现有时照出一个面,有时照出的是一条线,这是一次意想不到的小发现,给我带来了兴趣,去探索它到底为什么并且获得了答案。它不但给我带来了对数学的兴趣,又提高了我对生活新的看法,希望大家在生活中,要勤于发现,要做一个善于观察、善于思考的好学生。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:39:19
--
2月22日 星期日阴
八路实验小学六(7)班马维力
这几天我一直在思考着另外一种求圆柱体积的方法,凭着我的感觉我列出了这样一个算式:直径×直径×高×3.14÷4。
放学回到家,我就开始证明这个式子到底对不对,我试了一下,用课本上的解法和我的这种解法来算一个圆柱的体积完全一样,我又试了很多次结果都一样。
我感到非常地纳闹,我的这种解法到底是什么意思,经过我一番的思考和证明发现原来是把圆柱看成一个相当于直径和高相等的正方体。然后求出正方体的体积,再根据圆柱与正方体的比是:3.14∶4就成了一个圆柱的体积了。
这只是我个人的想法,请广大爱好者参与研究,给予指正。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:40:00
--
2月28日星期六 晴
八路实验小学六(7)班侯京
今天我在看报纸的时候看见了这样一个题目:求圆锥的表面积。
[题目]一个圆锥,底面直径是6米,圆锥的顶点到底面圆周上任点长是5米,求这个圆锥的表面积。
我虽没有学习过求圆锥的表面积,但已经学习过圆柱的表面积,通过圆柱的表面积的解题方法知道:圆柱的表面积等于一个侧面加上两个底面积,而圆锥的表面积就是一个侧面积加上一个底面积,侧面是一个扇形,我虽没学过但我查了资料知道求扇形的面积是:扇形的面积=弧长×圆半径×1/2,题目中已经告诉了我们圆锥顶点到底面圆周上任一点长是5米,而弧长是3.14×6=18.84(米),扇形面积是18.84×5×1/2=47.1(平方米),最后用扇形面积加上底面积,就得到圆锥的表面积:47.1+3.14×(6/2)×(6/2)=75.36(平方米)。
数学是思维的体操,我们只要勤学善思,就一定会攻克难题,走上成功之路!
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:40:31
--
2月27日 星期六阴
八路实验小学六(7)班 马维力
今天,我学习了比例的基本性质,我感到万分的不解,为什么比例的外项之积等于内项之积。我经过了冥思苦想终天明白了。
假如 b/a=c/d,将a扩大d倍,要想使比值不变,也必须将b扩大a倍,也就变成了bd/ad;再把等号右边比中的d扩大a倍,要想使比值不变,也要把c扩大a倍,就变成了ca/da。那么比例就变成了bd/ad=ca/da,把等号左右的ad消去,所以就变成了ad=ca。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:41:01
--
3月2日星期二 晴
八路实验小学六(7)班马维力
每逢清明节,巨山上便会人山人海,于是一些骗子便想出了一些骗人的把戏来骗人,比如:像圆盘赌物。
道具非常简单,在一块木板上画一个大圆,大圆中心用钉子固定一根可以转动的指针。大圆被分成24个相等的格,格内的针可以转,格内分别写着1—24个相等的数,在单数格中没有值钱的,而双数中差不多都是值钱的。
玩法也很简单,把指针先拨到1,然后你拨动指针,指针就开始旋转,最后停在某个格内,接着再按着指针所在的格上标的数,再把指针拨动,N-1格,N是格子上所标的数。
这只不过是一个小小的数学游戏,其实你无论拨到哪格,只能吃亏,不能得利。因为当指针转到奇数格上,拨动的格数便是奇数-1=偶数,奇数+偶数只等于奇数,所以不可能转到偶数格上,就得不到值钱的东西,假如指针转到偶数格上,拨动的格数便是偶数-1=奇数,奇数+偶数=奇数,还不能得到值钱的东西。
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:41:37
--
3月8日 星期一 晴
今天我听了一节用多媒体进行教学《质数和合数》的一堂公开课,听后彼有一番感慨,本来运用多媒体进行教学是为了帮助教者的一种组织手段,能够更好得为教学服务,增加教学的新颖性、独特性、深化性,更加具有吸引性,这么长一段时间提出对学生进行素质化教学,但是听了几节运用多媒体进行教学的课,却都流露出注入式的影子,不错注入教学以前已经扎根,但我们一定在平时的教学中得慢慢改之;另一方面运用多媒体教学更能调动学生的积极性,教学是围绕学生服务的并不是围绕计算机服务。是否能引出广大一线教师的共鸣!
--------------------------------------------------------------------------------
--作者:翱翔
--发布时间:2004-3-20 13:42:16
--
3月6日星期六晴
八路实验小学六(7)班侯晶晶
今天是一个阳光明媚的中午,我正在家里看数学报,无意中看到求比值与化简比这个题目,我想这不是上学期学过的吗?但是我又一想,我还是看一看吧!
“求比值”与“化简比”之间既有区别,又有联系。同学们学习时,要注意以下几点:
1、求比值的目的是求一比的前项除以后项的结果;化简比的目的是把一比化成和它相等并且前、后项互质的整数比。
2、求比值与化简比的方法类似。有以下几种:
(1)运用比的基本性质。如:
5/6∶1/2=(5/6×6)∶(1/2×6)①比值为5/3;②化简比为5∶3。
(2)运用比与除法的关系。如:
6.3∶0.9=6.3÷0.9①比值为7;②化简比为7∶1。
(3)运用比与分数的关系。如:
16∶20=16/20=4/5①比值为4/5或0.8;②化简比为4∶5。
3、求比值的结果是一个数,可以是整数,也可以是小数和分数;化简比的结果是一个比,它可以写成真分数或假分数的形式(见上例),不能写成整数、小数或带分数的,化简比的结果要读成几比几,如:16∶20化简比为4/5,应读作:4∶5。
通过这就可看出,只要我们多看一些关于数学方面的资料,你的成绩会提高的。
小学五年级数学论文 小学生在数学学习的过程中,由于种种原因易导致计算错误和失误。e69da5e887aae799bee5baa6e79fa5e98193363我们往往认为这是学生“马虎”造成的。根据我的教学经验,以及小学生的年龄特点和认知规律,学生在计算和读题中出错,不能仅仅归结为马虎,原因大致有以下几方面: 1、感知错误 题目中的数看错或抄错。由于计算题本身没有情节并且外形单一,学生受到思维发展程度的制约,就容易造成在观察题目时,感知模糊,注意力不集中,观察不仔细,易抄错数和符号等。如一些学生常把“89”写成“98”或者“86”,把“100003”写成“10003”。对于一些应用题,名词术语丰富,如表示数量之间关系的术语:比……多(少)、一共、增加、增加到、还剩、同样多、几倍、平均等,学生没有确切地理解和熟练地掌握。 2、思维定势的干扰 当学生碰到与原有强化信息类似的外来信息时,原来的信息便会被激活,产生思维干扰,易造成错误。如学生会在平时的大量计算和专题训练时形成固定的思维习惯,而当题目与原来的题目相似,但又有所不同发生了变化时,仍然按照原来的做题方法进行,不能及时、准确地分辨信息。如在接近整十、整百数的加减法的练习题16+99、35+198、74+297中夹一道68+101,学生依据简便算法中“多加了要减去”这一定势思维,把68+101变成68+100-1来计算,造成错误。 3、技能缺陷 加、减、乘、除这些基本运算是各种复杂运算的基础,只有在学生掌握了这些基本运算后,才能提高计算的正确率和速度。一些教师在平时的教学中不重视审题,对学生读题的技能指导也不够。 4、不良学习习惯的影响 孩子注意力不集中,对已经学习过的内容不感兴趣,对于反复做过的练习态度不认真,对新学内容一知半解,知识半生不熟最容易马虎。
联系生活实际,提高教学效率
论文摘要:小学数学教学新大纲要求“使学生感受数学与现实生活的密切联系,使学生初步学会运用所学的数学知识解决一些简单的实际问题。”本文主要论述如何把学生的生活实际作为切入点和突破口,加大课改力度,提高学生的参与度,激发学生的学习兴趣,在重视人本教育中体现数学的实用价值,从而达到提高教学效率的目的。
关键词:生活实际 兴趣 效率 实践
数学源于生活,寓于生活,用于生活。在小学数学中如何将人类认识知识的过程简约地展现在学生面前,让学生亲自感悟到数学知识的来龙去脉,是学生牢固掌握知识的前提条件。同时,学生在感悟数学知识的过程中,进行着积极的探索、思考,是培养学生创新精神和创新能力的源泉。
在以往的小学数学教学中,教师非常重视数学知识的教学,而很少关注这些数学知识和学生的实际生活有哪些联系。学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学的趣味和作用。这对学生实践能力和创新能力的培养是很不利的。新修订的小学数学教学大纲明确指出:"要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。"这就要求数学教师结合学生的生活经验和已有的知识来设计富有情趣和意义的活动,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强了学生对数学知识的应用意识,培养学生的自主创新能力。
同时,在新课程标准中明确提出,教师不仅要关注学生数学学习的水平,更要关注他们在数学活动中所表现出的情感与态度,帮助学生认识自我,建立信心。真正实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。因此,我认为我们可以从学生的生活实际出发,通过设置情境,使枯燥的数学趣味化,令学生体验到数学并不枯燥,数学并不陌生,数学就在我们的身边,从而产生学习数学的浓厚兴趣,并且使每一位学生在学习数学的过程中建立学好数学、会用数学的信心,培养不畏困难、严谨求实的思想品质,以及热爱科学、勇于探索的科学精神。诚然,小学生的生活经验尚少,但教师如有意识的加以引导,必能收到事半功倍的效果,下面从四个方面试述如何把学生的生活实际作为切入点和突破口,提高教学效率:
一、联系生活实际,孕育学习兴趣。 数学离不开生活,生活离不开数学。在教学前可引导学生搜集生活中的数学信息,可积累数学知识,更是培养学生学习数学兴趣的最佳途径。
例如,在教学"利息"前,我让学生做了两个准备工作:一是到银行存一次钱,二是调查一下一年期、二年期、三年期的年利率分别是多少。学生交头接耳、跃跃欲试、对即将要学的知识产生了浓厚的兴趣。课后,他们或邀同学,或邀父母,或独立操作,兴致盎然的完成了这一 特殊的作业。上课的时候,学生们纷纷带来了他们的存单,还七嘴八舌的告诉我他们的发现:自己回家与父母以前的存单比较了一下,发现利率下调了;甚至还有同学告诉我他还计算了一下,发现存单上填写的本息合计少了,是不是银行弄错了……这样,既避免了利息的教学公式化,又密切了数学与生活的联系。
事实证明,如果教师做个有心人,引导学生从生活中找数学的素材,感受生活中处处有数学,学习数学如身临其境,就会产生亲切感,有利于形成似曾相识的接纳心理,例如:上学时可让学生估算一下到校需多少时间,以免迟到;外出旅游估算一下要带多少钱,才够回来等等。
这会可以了吧